首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low-frequency elastic properties of strontium titanate near the ferroelastic phase transition were studied by the torsional-vibration technique. Domain wall motion was shown to contribute noticeably to the anomalies in the shear modulus and internal friction. It was established that the wall motion under varying elastic stresses is an unactivated process corresponding to viscous flow with a relaxation time inversely proportional to temperature. Spontaneous twisting of samples at the phase transition was revealed, and a model is proposed to account for the sample chirality and the spontaneous twisting effect.  相似文献   

2.
The possibility of studying the size distribution of particles suspended in a liquid irradiated with short pulses of strong electric fields, which almost do not change the properties of the disperse system is considered. The particle size is varied from 10 to 1000 nm. Relaxation dependences of the optically anisotropy induced by such pulses are investigated. The relaxation curves of the induced electrooptical effect are shown to behave similarly to the relaxation curves of the effect in the system with completely oriented particles. For aqueous polydisperse systems of diamond, graphite, and palygorskit, whose particles significantly differ in shape and physicochemical properties, the relaxation dependences of the electrooptical effect induced by fields of different duration and amplitude are measured. The correlation coefficients between the relaxation dependences are calculated. If the field is sufficiently strong, the correlation coefficients remain close to unity for all the three systems studied irrespective of the duration of the field pulse. This indicates that these curves are similar and that short powerful pulses can be used for determining the size distribution of particles in nanodisperse systems.  相似文献   

3.
We study the microscopic viscoelastic properties and relaxation dynamics of solutions of a side-chain associative polymer, hydrophobically modified hydroxyethyl cellulose (hmHEC). Dynamic light scattering from small tracer particles suspended in the polymer solutions is used to determine their viscous and elastic moduli on the scale of the particles. Bulk-scale viscoelastic properties are measured by shear rheometry. The motion of the tracer particles in hmHEC is diffusive at short times and subdiffusive at intermediate and long times. The long-time subdiffusive motion was not observed in parallel experiments on unmodified HEC solutions, and is explained in terms of hindered reptation of the hydrophobically modified polymer chains in the associative network. Dynamic light scattering from the polymer molecules themselves shows that chain relaxation in hmHEC is dominated by slow concentration-dependent processes due to the large-scale associative network structure, while that in HEC is dominated by fast concentration-independent Rouse-like dynamics.  相似文献   

4.
The relaxation characteristics of magnetic nanoparticles (CoFe2O4) were investigated in J774A.1 macrophages and after voluntary inhalation. In dry form 25% of the particles showed Néel relaxation. Relaxation in macrophages occurred within minutes and could be inhibited by fixation, showing Brownian relaxation and intracellular transport processes. Relaxation in the lung happened similarly, but was dependent on the time after deposition. The particles were cleared from the lung within 2 weeks.  相似文献   

5.
Ultrasonic wave properties in the particle compounded agarose gels   总被引:1,自引:0,他引:1  
Matsukawa M  Akimoto T  Ueba S  Otani T 《Ultrasonics》2002,40(1-8):323-327
Ultrasonic wave properties (attenuation and velocity) in the particle compounded agarose gels have been experimentally studied in the range from 1 to 30 MHz. The particles used were talc, glass beads and graphite. The effects of size and volume concentration of particles were clearly observed as changes of ultrasonic wave properties. Applying the Urick's theory for viscous liquid suspensions, the specific curves of velocity in the gels were observed as a function of a beta, where a is the radius of the particles and beta is described by angular frequency omega, density rho and fluid viscosity eta. This indicates that the particle behavior in the gels seems to be similar with that in the viscous fluid. The estimated eta in the gels was higher than that of the free water, showing the high viscosity in the gels.  相似文献   

6.
We report a simple experiment in freestanding smectic films in which elastic distortions of the c director drive macroscopic flow. The flow field is visualized with tracer particles. Measurements are compared to predictions of a model that employs the coupled dynamic equations for director and velocity fields. Relaxation dynamics depends on the topology of the film center: for defect-free target patterns, shear flow provides the dominating contribution to the c director dynamics. In presence of a central topological defect of strength S = + 1, the influence of flow on the relaxation dynamics is practically negligible, while for a central S = - 1 defect, the influence of vortex flow on the c-director relaxation is roughly twice as large as for the defect-free state.  相似文献   

7.
8.
The experimental proof of the possibility of the formation of an open sector instead of a twin boundary in pentagonal small particles, which was previously regarded in the literature as an improbable channel of relaxation of the elastic stress associated with a disclination defect, is presented. The relation between the critical size of the pentagonal small particle and the sector angle at which the probability of this channel of elastic stress relaxation becomes considerable is discussed.  相似文献   

9.
The problem of monopole, dipole, and rotational scattering of a spatially inhomogeneous time-harmonic sound field by an arbitrary spherical particle is solved for the cases of the medium being a viscous compressible liquid or an isotropic elastic medium. Equations for the spherical mean fields at the particle are obtained. These equations are used to derive the formulas for the scattered fields. Different limiting cases of particle behavior are considered. In particular, it is shown that the dipole scattering is determined by two components of particle oscillations, one of which corresponds to translational oscillatory motion and the other to oscillations of two antiphase monopoles. For these types of particle oscillations, a scattering matrix, which determines the scattering of an arbitrary field by a particle, is constructed. The matrix allows the formalization of the processes of multiple sound scattering by particles and is valid for any distances between the particles down to their contact.  相似文献   

10.
Relaxation of slow quasi-transverse phonons in anharmonic processes of scattering in cubic crystals with positive (Ge, Si, diamond) and negative (KCl, NaCl) anisotropies of the second-order elastic moduli has been considered. The dependences of the relaxation rates on the direction of the wave vector of phonons in scattering processes with the participation of three quasi-transverse phonons (the TTT relaxation mechanisms) are analyzed within the anisotropic continuum model. It is shown that the TTT relaxation mechanisms in crystals are associated with their cubic anisotropy, which is responsible for the interaction between noncollinear phonons. The dominant contribution to the phonon relaxation comes from large-angle scattering. For crystals with significant anisotropy of the elastic energy (Ge, Si, KCl, NaCl), the total contribution of the TTT relaxation mechanisms to the total relaxation rate exceeds the contribution of the Landau-Rumer mechanism either by several factors or by one to two orders of magnitude depending on the direction. The dominant role of the TTT relaxation mechanisms as compared to the Landau-Rumer mechanism is governed, to a considerable extent, by the second-order elastic moduli. The total relaxation rates of slow quasi-transverse phonons are determined. It is demonstrated that, when the anharmonic processes of scattering play the dominant role, the inclusion of one of the relaxation mechanisms (the Landau-Rumer mechanism or the mechanisms of relaxation of the slow quasi-transverse mode by two slow or two fast modes) is insufficient for describing the anisotropy of the total relaxation rates in cubic crystals.  相似文献   

11.
A model for the oscillation of gas bubbles encapsulated in a thin shell has been developed. The model depends on viscous and elastic properties of the shell, described by thickness, shear modulus, and shear viscosity. This theory was used to describe an experimental ultrasound contrast agent from Nycomed, composed of air bubbles encapsulated in a polymer shell. Theoretical calculations were compared with measurements of acoustic attenuation at amplitudes where bubble oscillations are linear. A good fit between measured and calculated results was obtained. The results were used to estimate the viscoelastic properties of the shell material. The shell shear modulus was estimated to between 10.6 and 12.9 MPa, the shell viscosity was estimated to between 0.39 and 0.49 Pas. The shell thickness was 5% of the particle radius. These results imply that the particles are around 20 times more rigid than free air bubbles, and that the oscillations are heavily damped, corresponding to Q-values around 1. We conclude that the shell strongly alters the acoustic behavior of the bubbles: The stiffness and viscosity of the particles are mainly determined by the encapsulating shell, not by the air inside.  相似文献   

12.
Results previously obtained in molecular dynamics experiment with Lennard-Jones (n−6) (L-J (n−6)) fluid were applied for the determination of viscous and elastic properties of real molecular fluids (shear viscosity coefficient and pressure). Parameters σ and of real liquids (liquid hydrocarbons) were determined by fitting pρT data of model fluids to experimental pρT data of real liquids. Using the data obtained in that way, parameters σ and viscous and elastic characteristics of real liquids were determined. The comparison of experimental and calculated viscous and elastic characteristics revealed lesser dependence of viscous properties from n in comparison with elastic properties.  相似文献   

13.
颗粒介质弹性的弛豫   总被引:1,自引:0,他引:1       下载免费PDF全文
孙其诚  刘传奇  周公旦 《物理学报》2015,64(23):236101-236101
颗粒介质是复杂的多体相互作用体系, 其弹性源自内部的力链结构, 弹性能量处在亚稳态, 具有复杂的弛豫行为. 在常规作用下, 颗粒介质往往呈现明显的弹性弛豫. 应力松弛是应变恒定时应力的衰减现象, 弹性弛豫是应力松弛的主要原因. 在前期工作基础上, 从弹性势能面和双颗粒温度热力学角度分析了弹性弛豫的机理, 量化了弹性应力演化不可逆过程; 基于双颗粒温度热力学计算得到了弹性能、颗粒温度和应力的演化, 其中应力松弛的计算结果与实验结果基本一致, 讨论了颗粒温度初值和输运系数的影响. 指出, 开展力链结构及其动力学研究是揭示宏观弹性弛豫机理的关键.  相似文献   

14.
Structure activity relationship of magnetic particles as MR contrast agents   总被引:1,自引:0,他引:1  
Structure activity relationship (SAR) of superparamagnetic MR contrast agents is discussed based on physicochemical properties and relaxivity data of 16 different particles. All the magnetic particles reduce both relaxation times, T1 and T2. The effect on T2 is stronger than the effect on T1. The relaxation efficacy varies over a wide range. Minor modifications in the preparation of the magnetic particles result in products with different susceptibility properties. The T2 relaxivity is dependent upon the magnetic susceptibility as well as particle size. Small particles reduce the relaxation times to a larger extent than the larger particles. No significant difference in relaxivity is observed between compact and porous particles. Magnetic particles coated with nonmagnet polymer are effective relaxation agents, while nonmagnetic monodisperse particles show no effect on the relaxivity.  相似文献   

15.
A facile technique with only one step for fabrication of anisotropic colloidal particles at the air/water interface is demonstrated. Anisotropic colloidal particles with controlled shapes can be easily obtained by tuning the incubation time in solvent vapor at room temperature. The formation of separate anisotropic particles is attributed to the lateral stretch on the particles by the interfacial forces and repulsion among the neighboring particles by the generation of the polymer solution flows. To further explain the proposed formation mechanism of the colloidal particles with shape anisotropy, an in situ experiment is designed for direct observation of the arrangement change of the colloidal particles. This fabrication technique is general and applicable to polymer colloidal particles with various initial sizes ranging from microscale to nanoscale. Moreover, the elastic properties of the anisotropic colloidal particles are measured which exhibit a prominent change with different shapes and the change trend of the elastic moduli is similar for particles with different original sizes. This work provides a versatile approach for fabrication of anisotropic colloidal particles with tunable shapes and sizes and establishes the interplay between particle shape and elastic property, which is much valuable for further research on the effect of particle parameters on drug delivery process.  相似文献   

16.
空气在多孔介质中对流换热的数值模拟   总被引:4,自引:0,他引:4  
本文对空气在多孔结构中的对流换热进行了数值研究.数值模拟与实验的比较表明,对空气在玻璃或轴承钢颗粒多孔结构中的对流换热进行数值模拟时,应采用考虑热弥散效应的局部非热平衡模型.本文还研究了颗粒直径、颗粒导热系数、空气物性随压力的变化及粘性耗散等对换热的影响.  相似文献   

17.
Thermoplastic elastomers (TPEs) are conventionally made of block copolymers or partly cross-linked polymer blends. Alternatively, TPEs can be prepared from structured latices, too. Hard-soft latex particles with a thermoplastic core and an elastomeric shell yield highly extendable elastic films, the strength of which depends sensitively on the relative core size and the particle architecture. Core-shell particles were prepared, by two-step emulsion polymerization, with the thermoplastic polystyrene (PS) in the core and the elastomer polyethylacrylate (PEA) in the shell. PEA particles were synthesized first. The PS cores were then incorporated in them in the second step. This method permits the design of monocore. as well as multicore, particles. These PS-PEA particles were not cross-linked in the core or in the shell. They can be classified as microblends. Compression-molded films of them exhibited, therefore, a coarsened microphase morphology that was, however, still much finer than that of simple melt-mixed blends PS/PEA. The film morphologies of monocore and multicore particles were different as far as the former yielded spherical PS domains, while the latter yielded extended PS clusters. This was strongly reflected by the stress-strain behavior: Films from multicore particles responded in a viscoelastic, rubbery manner, while films from monocore particles behaved like viscous liquids.  相似文献   

18.
We investigate a class of nonlinear dynamical systems describing the movement of a particle in a viscous medium under the influence of a kick force. These systems can be regarded as a generalization of the Langevin approach to Brownian motion in the sense that the fluctuating force on the particle is not Gaussian white noise but an arbitrary non-gaussian process generated by a nonlinear dynamical system. We investigate how certain properties of the force (periodicity, ergodicity, mixing property) transfer to the velocity of the particle. Moreover, the relaxation properties of the system are analysed.Address after October 1, 1989: Institut für Theoretische Physik, RWTH, D-5100, Aachen, FRG  相似文献   

19.
Robust empirical constitutive laws for granular materials in air or in a viscous fluid have been expressed in terms of timescales based on the dynamics of a single particle. However, some behaviours such as viscosity bifurcation or shear localization, observed also in foams, emulsions, and block copolymer cubic phases, seem to involve other micro-timescales which may be related to the dynamics of local particle reorganizations. In the present work, we consider a T1 process as an example of a rearrangement. Using the Soft Dynamics simulation method introduced in the first paper of this series, we describe theoretically and numerically the motion of four elastic spheres in a viscous fluid. Hydrodynamic interactions are described at the level of lubrication (Poiseuille squeezing and Couette shear flow) and the elastic deflection of the particle surface is modeled as Hertzian. The duration of the simulated T1 process can vary substantially as a consequence of minute changes in the initial separations, consistently with predictions. For the first time, a collective behaviour is thus found to depend on a parameter other than the typical volume fraction of particles.  相似文献   

20.
In the approximation of weak nonlinearity and weak viscosity of the medium, we obtain an equation describing the spectral density of the particle horizontal velocity for a Rayleigh wave propagating along the boundary of a half-space. The coefficients of nonlinear interaction between the wave harmonics are found on the assumption that the third-order elastic moduli arbitrarily depend on the depth. We find expressions for the complex correction to the wave frequency due to small relaxation corrections to the elastic moduli and small variations in the medium density, which arbitrarily depend on the depth as well. The imaginary part of this correction to the frequency determines the decay of the linear Rayleigh wave due to small relaxation corrections to the elastic moduli arbitrarily dependent on the depth. Using numerical simulation (with allowance for the interaction of 500 harmonics), we study distortions of an initially harmonic Rayleigh wave for a particular dependence of variations in the nonlinear moduli on the depth. An integral equation is derived for the nonlinear elastic moduli as functions of the depth. It is shown that for independent spatio-temporal distributions of the viscous moduli, functions determining the dependence of the viscosity on the depth are described by an analogous integral equation. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 50, No. 3, pp. 212–226, March 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号