首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the first synthesis of nanocrystalline powders of Co-doped ZnO (i.e. Zn0.9Co0.1O) diluted magnetic semiconductor by a polymerizable precursor method using nitrate salts of Zn and Co and a mixed solution of citric acid and ethylene glycol as a chelating agent and reaction medium, respectively. The polymeric precursors were characterized by TG-DTA to determine the thermal decomposition and crystallization temperature which was found to be at 723 K. The precursors were calcined at different temperatures of 773, 873, 973, and 1073 K for 1 h to obtain nanocrystalline powders. The morphology and crystalline size of the calcined particles were evaluated by SEM, TEM and Scherrer's equation. The average particle sizes calcined at 773, 873, 973, and 1073 K for 1 h were, respectively, 20, 60, 80, 150 nm, obtained from TEM. The XRD and Fourier transmission infrared (FT-IR) results indicated that the synthesized Zn0.9Co0.1O powders have the pure wurtzite structure without any significant change in the structure affected by Co substitution. Optical absorption measurements showed absorption bands indicating the presence of Co2+ in substitution of Zn2+. Room temperature magnetization results revealed a ferromagnetic behavior for the Zn0.9Co0.1O powders. Although the specific magnetization seemed to change with the particle size but there was no clear dependency since the largest magnetization was observed in the powders calcined at 873 K (60 nm). Instead, the specific magnetization appeared to show a trend of dependency on the lattice constant c of the wurtzite unit cell.  相似文献   

2.
Nanoparticles of Zn substituted lithium ferrite (Li0.32Zn0.36Fe2.32O4) have been prepared by a sol-gel method where the ultra-sonication technique has been adopted to reduce the agglomeration effect among the nanoparticles. The samples were heat-treated at three different temperatures and the formation of the nanocrystalline phase was confirmed by X-ray diffractograms (XRD). The average particle size of each sample has been estimated from the (311) peak of the XRD pattern using the Debye-Scherrer formula and the average sizes are in the range of 10-21 nm. The average particle size, crystallographic phase, etc. of some selected samples obtained from the high-resolution transmission electron microscopy are in agreement with those estimated from the XRD patterns. Static magnetic measurements viz., hysteresis loops, field cooled and zero field cooled magnetization versus temperature curves of some samples carried out by SQUID in the temperature range of 300 to 5 K clearly indicate the presence of superparamagnetic (SPM) relaxation of the nanoparticles in the samples. The maximum magnetization of the SPM sample annealed at 500 °C is quite high (68 Am2/Kg) and the hysteresis loops are almost square shaped with very low value of coercive field at room temperature (827.8 A/m). The particle size, magneto-crystalline anisotropy, etc. have been estimated from the detailed theoretical analysis of the static magnetic data. The dynamic magnetic behavior of the samples was also investigated by observing the ac hysteresis loops and magnetization versus field curves with different time windows at room temperatures. The different soft magnetic quantities viz., coercive field, magnetization, remanance, hysteresis losses, etc. were extracted from dynamic measurements. Dynamic measurements confirmed that the samples are in their mixed state of SPM and ordered ferrimagnetic particles, which is in good agreement with the results of static magnetic measurements. Mössbauer spectra of the samples recorded at room temperature (300 K) and at different temperatures down to 20 K confirmed the presence of the SPM relaxation of the nanoparticles of the samples.  相似文献   

3.
Cobalt ferrite nano-particles (CoFe2O4) were synthesized by the co-precipitation method with ammonium hydroxide as an alkaline solution. The reactions were carried out at different temperatures between 20 and 80 °C. The nano-particles have been investigated by magnetic measurements, X-ray powder diffraction and transmission electron microscopy. The average crystallite size of the synthesized samples was between 11 and 45 nm, which was found to be dependent on both pH value of the reaction and annealing temperatures. However, lattice parameters, interplane spacing and grain size were controlled by varying the annealing temperature. Magnetic characterization of the nano-samples were carried out using a vibrating sample magnetometer at room temperature. The saturation magnetization was computed and found to lie between 5 and 67 emu/g depending on the particle size of the studied sample. The coercivity was found to exhibit non-monotonic behavior with the particle size. Such behavior can be accounted for by the combination between surface anisotropy and thermal energies. The ratio of remanence magnetization to saturation magnetization was found to exhibit almost linear dependence on the particle size.  相似文献   

4.
A mixed Mn-Zn-Fe carbonate was prepared by precipitation of metal ions with ammonium carbonate and control of pH=7. Nanocrystalline Mn-Zn ferrite powders were synthesized by thermal decomposition of the carbonate precursor at 500 °C in air. The mean crystallite size of the ferrite particles is 14 nm with a specific surface of 74 m2/g. The magnetization at 5 K of the Mn-Zn ferrite powders (66 emu/g) is smaller than the saturation magnetization of the bulk material. Hysteresis loop measurements indicate ferrimagnetic behavior at 5 and 298 K with a small coercivity at room temperature.  相似文献   

5.
Nanostructured zinc ferrite of particle size 10 nm was synthesized by using the nitrates of appropriate cations and citric acid. This system was irradiated by 100 MeV oxygen beam with the fluence of 5×1013 ions/cm2. The particle size of the system remains almost same after the irradiation. We observe decrease in magnetization of the sample after irradiation at 300 and 10 K. The nature of the σ-H plot shows the presence of superparamgnetic domains at 300 K even after irradiation. The blocking temperature decreases from 276 to 63 K after irradiation. The Mössbauer spectroscopy supports the presence of superparamgnetic domains at 300 K in both the samples. The decrease in magnetization after irradiation is attributed to the decrease in cation inversion and increase in canting angle as observed from in-field Mössbauer spectroscopy.  相似文献   

6.
We present an extremely simple and inexpensive way to obtain controlled-size and density Co metallic particles on Si(1 1 1) using electrodeposition. When unpatterned substrates are used, the particle density and size can be controlled by adjusting the pulse frequency and the total deposition time. Randomly arranged cobalt particles with diameters of few tens of nanometres are obtained for short deposition times. Continuing the deposition, the particle size and density can be increased until coalescence. Magnetic force microscopy images show magnetically coupled/uncoupled particles depending on the size and distance between them. For small decoupled particles, no in-plane uniaxial anisotropy is found, in agreement with transmission electron microscopy observations which show randomly oriented single crystal particles. As the particle coalescence increases, the in-plane anisotropy evaluated from magnetization loops increases as well. When deposited on focused ion beam patterned substrates, well organized nanoparticles with adjustable magnetic anisotropy are obtained. Ferromagnetic resonance measurements performed on these samples reveal that the magnetic anisotropy originates mainly from the particle shape.  相似文献   

7.
Cr2O3 nanoparticles of sizes from 24 to 12 nm were synthesized by mechanical grinding. Magnetic hysteresis loops were observed in the temperature range 5-300 K. Zero-field magnetization measurements showed two peaks, at low temperature in the range 36-52 K and at high temperature in the range 255-290 K. They were found to shift to higher temperatures as the particle size was reduced. This was ascribed due to the enhancement of the effective anisotropy constant with a decrease in particle size. The exchange bias was found to increase as the particle size became smaller. This is believed to arise due to an increase in uncompensated spins as a result of large surface area created.  相似文献   

8.
Platelet γ-Fe2O3 particles of particle size less than 100 nm were prepared for medical applications that use the hysteresis-loss heating of ferromagnetic particles. The γ-Fe2O3 particles were obtained through the dehydration, reduction, and oxidation of platelet α-FeOOH particles, which were synthesized by the precipitation of ferric ions in an alkaline solution containing ethanolamine, and the crystals grown using a hydrothermal treatment. The γ-Fe2O3 particles contained dimples formed by the dehydration of α-FeOOH particles. The coercive force and the saturation magnetization of the γ-Fe2O3 particles were in the ranges 11.9 to 12.7 kA/m (150 to 160 Oe), and 70 to 72 Am2/kg (70 to 72 emu/g), respectively. The specific loss power of the γ-Fe2O3 particles, estimated from their temperature-raising property measured under a peak magnetic field of 50.9 kA/m (640 Oe) and at a frequency of 117 kHz, was 590 W/g. This value is higher than that of spherical cobalt-containing iron oxide particles having equivalent coercive force and saturation magnetization, reflecting the larger area of the minor hysteresis loop measured under a peak magnetic field of 50.9 kA/m (640 Oe).  相似文献   

9.
In the present study, a high permeability induction Fe-30%Ni alloy cubic bulk was prepared by the selective laser melting process. In order to reveal the microstructure effect on soft magnetic properties, the microstructure and magnetic properties of the Fe-30%Ni alloy were carefully investigated by scanning electron microscopy, X-ray diffraction and hysteresis measurements. The bcc-Fe (Ni) phase formation is identified by X-ray diffraction. Meanwhile, it was found that low bcc lattice parameter and high grain size could be obtained when high laser scanning velocity and low laser power were used. Moreover, the lowest value of coercivity is 88 A/m, and the highest value of saturation magnetization is 565 Am2/kg, which can be obtained at a low laser scanning velocity of 0.4 m/s and high laser power input at 110 W.  相似文献   

10.
Magnetic nanofibers of ZnFe2O4/γ-Fe2O3 composite were synthesized by electrospinning from a sol-gel solution containing a molar ratio (Fe/Zn) of 3. The effects of the calcination temperature on phase composition, particle size and magnetic properties have been investigated. Zinc ferrite fibers were obtained by calcinating the electrospun fibers in air from 300 to 800 °C and characterized by thermogravimetric analyses, Fourier transformed infrared spectroscopy, X-ray photoemission spectroscopy, X-ray diffraction, vibration sample magnetometry and magnetic force microscopy. The resulting fibers, with diameters ranging from 90 to 150 nm, were ferrimagnetic with high saturation magnetization as compared to bulk. An increase in the calcination temperature resulted in an increase in particle size and saturation magnetization. The observed increase in saturation magnetization was most likely due to the formation and growth of ZnFe2O4/γ-Fe2O3 diphase crystals. The highest saturation magnetization (45 emu/g) was obtained for fibers calcined at 800 °C.  相似文献   

11.
This paper reports the deposition of ZnO nanoparticles with controlled sizes and different particle densities and their structural, composition and optical properties. They were deposited by means of a DC magnetron based vacuum nanoparticle source onto different substrates (GaAs, Si and Ti/SiO2/Si). We believe that this is the first time that such nanoparticles have been produced using this unique technique. Zinc was used as sputtering target to produce zinc nanoparticles which were oxidized in-line using molecular oxygen. The structural properties and chemistry of the ZnO were studied by transmission electron microscopy. An average particle size of 6(±2) nm was produced with uniform size distribution. The particle density was controlled using a quartz crystal monitor. Surface densities of 2.3 × 1011/cm2, 1.1 × 1013/cm2 and 3.9 × 1013/cm2 were measured for three different deposition runs. The ZnO particles were found to be single crystalline having hexagonal structure. Photoluminescence measurements of all samples were performed at room temperature using a cw He-Cd laser at 325 nm excitation. The UV emission around 375 nm at room temperature is due to excitonic recombination and the broad emission centered at 520 nm may be attributed to intrinsic point defects such as oxygen interstitials.  相似文献   

12.
Nanocrystalline Al-doped nickel ferrite powders have been synthesized by sol–gel auto-ignition method and the effect of non-magnetic aluminum content on the structural and magnetic properties has been studied. The X-ray diffraction (XRD) revealed that the powders obtained are single phase with inverse spinel structure. The calculated grain sizes from XRD data have been verified using transmission electron microscopy (TEM). TEM photographs show that the powders consist of nanometer-sized grains. It was observed that the characteristic grain size decreases from 29 to 6 nm as the non-magnetic Al content increases, which was attributed to the influence of non-magnetic Al concentration on the grain size. Magnetic hysteresis loops were measured at room temperature with a maximum applied magnetic field of ≈1 T. As aluminum content increases, the measured magnetic hysteresis curves become more and more narrow and the saturation magnetization and remanent magnetization both decreased. The reduction of magnetization compared to bulk is a consequence of spin non-collinearity. Further reduction of magnetization with increase of aluminum content is caused by non-magnetic Al3+ ions and weakened interaction between sublattices. This, as well as the decrease in hysteresis was understood in terms of the decrease in particle size.  相似文献   

13.
Nanosize aluminum substituted nickel zinc ferrites were prepared through aerosol route and characterized using TEM, XRD, magnetic measurements and Mössbauer spectroscopy. The particle size of as obtained samples was found to be ∼10 nm which increases up to ∼85 nm upon annealing at 1200 °C. The unit cell parameter ‘a’ decreases linearly with concentration of aluminum due to the small ionic radius of aluminum. The saturation magnetization for all the samples after annealing at 1200 °C lies in the range 12.9–72.6 emu/g and decreases linearly with concentration of aluminum. Room temperature Mössbauer spectra of all as obtained samples of ferrite compositions exhibited a broad doublet suggesting super paramagnetic nature. This doublet is further resolved into two doublets and assigned to the surface region and internal region atoms of the particles. The samples annealed at 1200 °C show broad sextets, which were fitted with five sextets, indicating different local environment of both tetrahedrally and octahedrally coordinated Fe cation.  相似文献   

14.
Size controlled cubic Fe3O4 nanoparticles in the size range 90–10 nm were synthesized by varying the ferric ion concentration using the oxidation method. A bimodal size distribution was found without ferric ion concentration and the monodispersity increased with higher concentration. The saturation magnetization decreased from 90 to 62 emu/g when the particle size is reduced to 10 nm. The Fe3O4 nanoparticles with average particle sizes 10 and 90 nm were surface modified with prussian blue. The attachment of prussian blue with Fe3O4 was found to depend on the concentration of HCl and the particle size. The saturation magnetization of prussian blue modified Fe3O4 varied from 10 to 80 emu/g depending on the particle size. The increased tendency for the attachment of prussian blue with smaller particle size was explained based on the surface charge. The prussian blue modified magnetite nanoparticles could be used as a radiotoxin remover in detoxification applications.  相似文献   

15.
The temperature dependence of the effective magnetic anisotropy constant K(T) of CoFe2O4 nanoparticles is obtained based on the SQUID magnetometry measurements and Mössbauer spectroscopy. The variation of the blocking temperature TB as a function of particle radius r is first determined by associating the particle size distribution and the anisotropy energy barrier distribution deduced from the hysteresis curve and the magnetization decay curve, respectively. Finally, the magnetic anisotropy constant at each temperature is calculated from the relation between r and TB. The resultant effective magnetic anisotropy constant K(T) decreases markedly with increasing temperature from 1.1×107 J/m3 at 5 K to 0.6×105 J/m3 at 280 K. The attempt time τ0 is also determined to be 6.1×10−12 s which together with the K(T) best explains the temperature dependence of superparamagnetic fraction in Mössbauer spectra.  相似文献   

16.
We focused on obtaining MFe2O4 nanoparticles using ricin oil solution as surfactant and on their structural characterization and magnetic properties. The annealed samples at 500 °C in air for 6 h were analyzed for the crystal phase identification by powder X-ray diffraction using CuKα radiation. The particle size, the chemical composition and the morphology of the calcinated powders were characterized by scanning electron microscopy. All sintered samples contain only one phase, which has a cubic structure with crystallite sizes of 12–21 nm. From the infrared spectra of all samples were observed two strong bands around 600 and 400 cm−1, which correspond to the intrinsic lattice vibrations of octahedral and tetrahedral sites of the spinel structure, respectively, and characteristic vibration for capping agent. The magnetic properties of fine powders were investigated at room temperature by using a vibrating sample magnetometer. The room temperature MH hysteresis loops show ferromagnetic behavior of the calcined samples, with specific saturation magnetization (Ms) values ranging between 11 and 53 emu/g.  相似文献   

17.
The magnetic properties of nickel ferrite nanoparticles in the form of powders, prepared by the sol-gel process and subjected to different annealing temperatures, were investigated using both static and dynamic measurements namely hysteresis, zero field cooled-field cooled magnetization (ZFC-FC) measurements and Mössbauer spectroscopy. The Transmission Electron Microscopy (TEM) studies reveal particle sizes for the as-prepared particles which increases upto 52 nm with annealing. A bimodal distribution, upto an annealing temperature of was observed. ZFC-FC measurements for the as-prepared samples reveal twin peaks, indicative of the bimodal size distribution. ZFC-FC measurements performed for fields varying from 100 Oe to 3 kOe show a superparamagnetic phase with blocking temperatures between 320 and . Numerical simulations for the ZFC-FC studies indicate that the signature of the bimodal size distribution can be seen only at very low fields. The variation of coercivity with particle size, as determined from the hysteresis measurements, shows a transition from a single domain to a multi domain state for particle sizes larger than 35 nm. Mössbauer measurements performed at room temperature for the as-prepared sample shows a six finger pattern for the samples with higher particle size and a doublet pattern for the samples with smaller particle size, which is indicative of their superparamagnetic nature.  相似文献   

18.
Size-controlled Mn0.67Zn0.33Fe2O4 nanoparticles in the wide range from 80 to 20 nm have been synthesized, for the first time, using the oxidation method. It has been demonstrated that the particle size can be tailor-made by varying the concentration of the oxidant. The magnetization of the 80 nm particles was 49 A m2 kg−1 compared to 34 A m2 kg−1 for the 20 nm particles. The Curie temperatures for all the samples are found to be within 630±5 K suggesting that there is no size-dependent cation distribution. The critical particle size for the superparamagnetic limit is found to be about 25 nm. The effective magnetic anisotropy constant is experimentally determined to be 7.78 kJ m−3 for the 25 nm particles, which is about an order of magnitude higher than that of the bulk ferrite.  相似文献   

19.
Iron (Fe) fine particles encapsulated by titanium oxide (TiO2) were synthesized through a solid-phase reaction. The structure of Fe cores and TiO2 shells consisted of α-Fe and rutile TiO2, respectively. The average particle size was 0.8 μm, in which a Fe particle with a diameter of ∼750 nm was encapsulated by a TiO2 shell with a thickness of ∼100 nm. The Fe particles had a high saturation magnetization of 127 Am2/kg and low coercivity of 1.6 kA/m. They also exhibited excellent corrosion resistance, similar to Fe3O4 in a soaking test.  相似文献   

20.
A consistent model is presented for the variation of saturation magnetization with particle size in maghemite nanoparticles, based on the existence of a magnetically disordered layer with a constant thickness of 1 nm. For particles smaller than 3 nm, layer thickness increases rapidly, and MS is already zero for 2.5 nm particle size. Magnetization measurements have been performed on maghemite–polymer nanocomposites with low size dispersion and a regular distribution of particles in the matrix. A representative number of samples have been studied with a diameter size in the range from 1.5 to 15 nm and ±10% of size dispersion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号