首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We report on structural and magnetic properties of granular films consisting of 2.5 nm Ni nanoparticles. The films are fabricated by the original laser electrodispersion technique, which allows producing nearly monodisperse and amorphous particles. Atomic force microscopy (AFM) study shows that in 8 nm thickness films the particles are self-assembled in clusters with the lateral size 100-150 nm and the height of about 8 nm. Performed by SQUID, the films magnetization measurements reveal superparamagnetic behaviour, characteristic for an ensemble of non-interacting single domain magnetic particulates. It is found that the magnetic moment of the particulate is equal to that of about 3000 individual Ni nanoparticles and the blocking temperature is close to room temperature. Defined from magnetic measurements, the size of single domain particulates correlates well with the size of the clusters determined from AFM images. We propose that exchange interaction plays an important role in the formation of the particulates by aligning the magnetic moments of the individual Ni nanoparticles inside the clusters. Presence of magnetic clusters with high blocking temperature makes the fabricated films potentially useful for high-density magnetic data storage applications.  相似文献   

2.
We present the first real-space analysis on a single-particle level of the dipolar chains and branched clusters self-assembling in magnetic fluids in zero field. Spatial correlations and chain-length distributions directly obtained from tracked particle positions in vitrified films of synthetic magnetic (Fe3O4) dispersions provide a quantitative test for simulations and theory of dipolar fluids. A pertinent example is the cluster-size distribution that can be analyzed with a one-dimensional aggregation model to yield a dipolar attraction energy that agrees well with the dipole moment found from independent magnetization measurements.  相似文献   

3.
Cobalt ferrite has attracted considerable attention in recent years due to its unique physical properties such as high Curie temperature, large magnetocrystalline anisotropy, moderate saturation magnetization, large magnetostrictive coefficient, excellent chemical stability and mechanical hardness. In this work we present the preparation, of fucan coated cobalt ferrite nanoparticles by a modified co-precipitation method and the study of their structural, microstructural and magnetic characteristics for their application as a solid support for enzymes immobilization and other biotechnology applications. Aqueous suspensions of magnetic particles were prepared by coprecipitation of Fe(III) and Co(II) in the presence of NaOH, acid oleic and fucan polymer. The X-ray diffraction indicates that the funtionalization does not degrade the core cobalt ferrite. The infrared (FTIR) bands, indicate the functional characteristics of the coating on the cobalt ferrite. Mössbauer spectra at room temperature indicate the presence of a broadened sextet plus a doublet which is typical of superparamagnetic relaxation. For the Co-ferrite uncoated and coated with fucan the doublets have areas of 36.1 % and 40.3 % respectively, indicating the presence of non-interacting particles and faster relaxation time. The Co-ferrite coated with oleic acid and oleic acid plus fucan have areas around 17.5 % and 17.1 % respectively which indicate a weak superparamagnetic relaxation due to a slow relaxation time. The magnetization measurements of the cobalt ferrite nanoparticles with and without coating confirm that they are superparamagnetic and this behavior is produced by the core nanoparticles rather than the coatings. The cobalt ferrite nanoparticles coated with oleic acid presented the highest magnetization than when coating with fucan.  相似文献   

4.
The utility and promise of magnetic nanoparticles (MagNPs) for biomedicine rely heavily on accurate determination of the particle diameter attributes. While the average functional size and size distribution of the magnetic nanoparticles directly impact the implementation and optimization of nanobiotechnology applications in which they are employed, the determination of these attributes using electron microscopy techniques can be time-consuming and misrepresentative of the full nanoparticle population. In this work the average particle diameter and distribution of an ensemble of Fe3O4 ferrimagnetic nanoparticles are determined solely from temperature-dependent magnetization measurements; the results compare favorably to those obtained from extensive electron microscopy observations. The attributes of a population of biocompatible Fe3O4 nanoparticles synthesized by a thermal decomposition method are obtained from quantitative evaluation of a model that incorporates the distribution of superparamagnetic blocking temperatures represented through thermomagnetization data. The average size and size distributions are determined from magnetization data via temperature-dependent zero-field-cooled magnetization. The current work is unique from existing approaches based on magnetic measurement for the characterization of a nanoparticle ensemble as it provides both the average particle size as well as the particle size distribution.  相似文献   

5.
We study a model system made of non-interacting monodomain ferromagnetic nanoparticles, considered as macrospins, with a randomly oriented uniaxial magnetic anisotropy. We derive a simple differential equation governing the magnetic moment evolution in an experimental magnetic susceptibility measurement, at low field and as a function of temperature, following the well-known Zero-Field Cooled/Field Cooled (ZFC/FC) protocol. Exact and approximate analytical solutions are obtained, together for the ZFC curve and the FC curve. The notion of blocking temperature is discussed and the influence of various parameters on the curves is investigated. A crossover temperature is defined and a comparison is made between our progressive crossover model (PCM) and the crude “two states” or abrupt transition model (ATM), where the particles are assumed to be either fully blocked or purely superparamagnetic. We consider here the case of a single magnetic anisotropy energy (MAE), which is a prerequisite before considering the more realistic and experimentally relevant case of an assembly of particles with a MAE distribution (cf. part II that follows).  相似文献   

6.
The magnetic properties of the superparamagnetic ferrihydrite nanoparticles that form as a result of the vital activity of Klebsiella oxytoca bacteria are studied. Both an initial powder with an average number of iron atoms N Fe ~ 2000–2500 in a particle and this powder after annealing at 140°C for 3 h in air are investigated. The following substantial modifications of the magnetic properties of the ferrihydrite nanoparticles are detected after annealing: the superparamagnetic blocking temperature increases from 23 to 49.5 K, and the average magnetic moment of a particle increases (as follows from the results of processing of magnetization curves). The particles have antiferromagnetic ordering, and the magnetic moment resulting in the superparamagnetism of the system appears due to random spin decompensation inside the particle. For this mechanism, the number of uncompensated spins is proportional to the number of magnetically active atoms raised to the one-half power, and this relation holds true for the samples under study at a good accuracy. The possible causes of the detected shift of magnetic hysteresis loops at low temperatures upon field cooling are discussed.  相似文献   

7.
Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensional(1D)micromagnetic methods,focused on the influence of the interface anisotropy.The calculated results are carefully compared with each other.The interface anisotropy effect is very palpable on the nucleation,pinning and coercive fields when the soft layer is very thin.However,as the soft layer thickness increases,the pinning and coercive fields are almost unchanged with the increment of interface anisotropy though the nucleation field still monotonically rises.Negative interface anisotropy decreases the maximum energy products and increases slightly the angles between the magnetization and applied field.The magnetic moment distributions in the thickness direction at various applied fields demonstrate a progress of three-step magnetic reversal,i.e.,nucleation,evolution and irreversible motion of the domain wall.The above results calculated by two models are in good agreement with each other.Moreover,the in-plane magnetic moment orientations based on two models are different.The 3D calculation shows a progress of generation and disappearance of vortex state,however,the magnetization orientations within the film plane calculated by the 1D model are coherent.Simulation results suggest that negative interface anisotropy is necessarily avoided experimentally.  相似文献   

8.
Magnetic single-domain nanoparticles constitute an important model system in magnetism. In particular, ensembles of superparamagnetic nanoparticles can exhibit a rich variety of different behaviors depending on the inter-particle interactions. Starting from isolated single-domain ferromagnetic or ferrimagnetic nanoparticles, the magnetization behavior of both non-interacting and interacting particle ensembles is reviewed. Particular attention is given to the relaxation time of the system. In the case of interacting nanoparticles the usual Néel–Brown relaxation law becomes modified. With increasing interactions, modified superparamagnetism, spin glass behavior and superferromagnetism are encountered.  相似文献   

9.
Magnetic properties of interacting La(0.2)Ca(0.8)MnO(3) nanoparticles have been investigated. The field-induced transition from antiferromagnetic (AFM) to ferromagnetic (FM) state in the La(0.2)Ca(0.8)MnO(3) bulk has been observed at exceptionally high magnetic fields. For large particles, the field-induced transition widens while magnetization progressively decreases. In small particles the transition is almost fully suppressed. The thermoremanence and isothermoremanence curves constitute fingerprints of irreversible magnetization originating from nanoparticle shells. We have ascribed the magnetic behaviour of nanoparticles to a core-shell scenario with two main magnetic contributions; one attributed to the formation of a collective state formed by FM clusters in frustrated coordination at the surfaces of interacting AFM nanoparticles and the other associated with inner core behaviour as a two-dimensional diluted antiferromagnet.  相似文献   

10.
We present simulations and analytical calculations for a system of magnetic nano-particles that possess a dipole moment that is shifted out of the center of mass, towards the surface, leading to a further asymmetry of the dipolar interaction. In our contribution, we discuss the peculiarities of ground state small clusters, both, with and without an external magnetic field. Small clusters help us to get an insight into the inter-particle interactions and form a building block for studies of larger systems. Without external magnetic field, the ground state structure changes from chains and rings with parallel alignment of moments, usually observed in dipolar particles (Prokopieva et al., 2009 [1]), to pairs and triangles with close to anti-parallel orientation of moments, when the shift of the dipole is increased. We also present magnetization properties of larger systems at finite temperature and observe the influence of the shift in particular on the initial slope of the magnetization curve, namely, the initial susceptibility.  相似文献   

11.
The magnetic and magneto-optical properties of ion-synthesized cobalt nanoparticles in the amorphous silicon oxide matrix are investigated as a function of the implantation dose. The analysis of the field dependences of the magnetization and the magneto-optical Faraday and Kerr effects demonstrates that, as the ion implantation dose increases, the superparamagnetic behavior of an ensemble of cobalt nanoparticles at room temperature gives way to a ferromagnetic response with the anisotropy characteristic of a thin magnetic film. The magnetization curves for the superparamagnetic and ferromagnetic ensembles of cobalt nanoparticles are simulated to determine their average sizes and the filling density in the irradiated layer of the silicon dioxide matrix. It is revealed that the spectral dependences of the Faraday and Kerr effects for ion-synthesized cobalt nanoparticles differ substantially from those for continuous cobalt films due to the localized excitations of free electrons in the nanoparticles.  相似文献   

12.
13.
MnFe2O4 nanoparticles were prepared by a coprecipitation chemical method. The average size of the obtained nanoparticles was about 30 nm. The hysteresis measured at T=300 K clearly shows ferromagnetic order at room temperature while that measured at T=450 K shows superparamagnetic behavior. The difference in the magnetization curves in the field increasing cycle and field decreasing cycle at higher temperatures (450 K or higher) is very unusual. In this case, a hysteresis in magnetization in higher magnetic fields with an opening up of the magnetization curve was observed. In this work, the effect of temperature and time of application of the applied field on the magnetization behavior was studied.  相似文献   

14.
莫康信  苏佳佳 《计算物理》2019,36(3):335-341
采用局域Monte Carlo方法模拟不同易轴分布的简单立方排列单分散单畴Fe纳米颗粒系统的ZFC-FC曲线及磁滞回线.结果表明:随着偶极相互作用的增强,系统的阻塞温度TB逐渐增大,且ZFC曲线的峰变宽.说明偶极相互作用使得系统的有效能垒提高,分布宽度增加.研究FC曲线磁化强度的倒数与温度关系,发现偶极相互作用系统中存在反铁磁有序.系统的阻塞态及超顺磁态的磁滞回线表明,极低低温下,随着偶极相互作用的增强,系统的矫顽力和剩磁减小,偶极相互作用阻碍系统的磁化;系统处于超顺磁态,各向异性作用及偶极相互作用使得系统的磁化曲线偏离Langevin曲线且偶极相互作用展现出退磁相互作用效应.偶极相互作用增强,系统磁化曲线与Langevin曲线偏差量的最大值向低场移动.在偶极相互作用下,易轴与外场夹角为45°的磁性纳米颗粒系统的平均有效能垒和有效能垒分布宽度较易轴随机分布系统的大.  相似文献   

15.
Magnetite nanoparticles, which are coated with oleic acid in a hexane solution and exhibit an average diameter of 7.7 nm, were embedded in a porous silicon (PS) matrix by immersion under defined parameters (e.g. concentration, temperature, time). The porous silicon matrix is prepared by anodization of a highly n-doped silicon wafer in an aqueous HF-solution. Magnetic characterization of the samples has been performed by SQUID-magnetometry. The superparamagnetic behaviour of the magnetite nanoparticles is represented by temperature-dependent magnetization measurements. Zero field (ZFC)/field cooled (FC) experiments indicate magnetic interactions between the particles. For the infiltration into the PS-templates different concentrations of the magnetite nanoparticles are used and magnetization measurements are performed in respect with magnetic interactions between the particles. The achieved porous silicon/magnetite specimens are not only interesting due to their transition between superparamagnetic and ferromagnetic behaviour, and thus for magnetic applications but also because of the non-toxicity of both materials giving the opportunity to employ the system in medical applications as drug delivery or in medical diagnostics.  相似文献   

16.
Isothermal magnetization and initial dc susceptibility of spheroidal, nearly monodisperse magnetite nanoparticles (typical diameter: 8 nm) prepared by a standard thermo-chemical route have been measured between 10 and 300 K. The samples contained magnetite nanoparticles in the form of either a dried powder (each nanoparticle being surrounded by a stable oleic acid shell as a result of the preparation procedure) or a solid dispersion in PEGDA-600 polymer; different nanoparticle (NP) concentrations in the polymer were studied. In all samples the NPs were not tightly agglomerated nor their ferromagnetic cores were directly touching. The high-temperature inverse magnetic susceptibility is always found to follow a linear law as a function of T, crossing the horizontal axis at negative temperatures ranging from 175 to about 1,000 K. The deviation from the standard superparamagnetic behavior is related to dipolar interaction among NPs; however, a careful analysis makes it hard to conclude that such a behavior originates from a dominant antiferromagnetic character of the interaction. The results are well explained considering that the studied samples are in the interacting superparamagnetic (ISP) regime. The ISP model is basically a mean field theory which allows one to straightforwardly account for the role of magnetic dipolar interaction in a NP system. The model predicts the existence of specific scaling laws for the reduced magnetization which have been confirmed in all studied samples. The interaction of each magnetic dipole moment with the local, random dipolar field produced by the other dipoles results in the presence of a large fluctuating energy term whose magnitude is comparable to the static barrier for magnetization reversal/rotation related to magnetic anisotropy. On the basis of the existing theories on thermal crossing of a barrier whose height randomly fluctuates in time it is predicted that the rate of barrier crossing is substantially driven by the rate of barrier fluctuations, which is fast (108–109 Hz) and almost independent of temperature. As a consequence, the standard picture of superparamagnetic NPs which undergo single-particle blocking by a static barrier below the blocking temperature should be substantially revised, at least in the present materials. The ISP model is perfectly matching with the view of activated magnetization rotation whose kinetics is significantly modified by barrier height fluctuations.  相似文献   

17.
High-resolution electron microscopy (HREM) reveals in the as-quenched Fe90Zr7B3 alloy the existence of medium range ordered (MRO) regions 1-2 nm in size. Transmission Mössbauer spectroscopy confirms that these regions are α-Fe MRO ones. Above the Curie point of the amorphous phase (TC=(257±2)K) they behave like non-interacting superparamagnetic particles with the magnetization decreasing linearly with the temperature. For these particles the average magnetic moment of 390μB and the average size of 1.7 nm, in excellent agreement with HREM observations, were estimated. The maximum of the isothermal magnetic entropy change at the maximum magnetizing field induction of 2 T occurs at the Curie temperature of the amorphous phase and equals to 1.05 Jkg−1 K−1. The magnetic entropy changes exhibit the linear dependence on the maximum magnetizing field induction in the range 0.5-2 T below, near and above TC. Such correlations are attributed to superparamagnetic behavior of α-Fe MRO regions.  相似文献   

18.
The magnetic properties of samples of nanoporous carbon with palladium clusters prepared from polycrystalline SiC have been studied over a wide range of temperatures. The specific magnetic moment rapidly decreases with increasing temperature. The obtained experimental magnetization curves have a nonlinear character but do not reach saturation even in a field of 10 kOe. Being constructed as functions of H/T, they lie on a universal curve, which suggests superparamagnetism of the system. The experimental curves have a hysteresis. The coercive force, first, decreases with increasing temperature and, then (in the range of 5–20 K), increases, thus forming a notch singularity. On the contrary, the residual magnetization rapidly decreases with increasing temperature. A conclusion on the prevailing contribution of superparamagnetic clusters to the magnetic subsystem is made.  相似文献   

19.
The magnetic behavior of superparamagnetic Co nanoparticles (2–4 nm in diameter) dispersed in an amorphous, insulating SiO2 matrix was studied. Conventional fittings of magnetization curves present mean magnetic moments which diminish with decrease in temperature. In order to treat this anomalous behavior, we have applied the interacting superparamagnetic model (ISP). Mean diameters obtained from transmission electron microscopy (TEM) were compared with values obtained applying ISP model.  相似文献   

20.
We have used the Stern-Gerlach deflection technique to study magnetism in chromium clusters of 20-133 atoms at temperatures between 60 and 100 K. We observe that these clusters have large magnetic moments and respond superparamagnetically to applied magnetic fields. Using superparamagnetic theory, we have determined the moment per atom for each cluster size and find that it often far exceeds the moment per atom present anywhere in the bulk antiferromagnetic lattice. Remarkably, our cluster beam contains two magnetically distinguishable forms of each cluster size with > or =34 atoms. We attribute this observation to structural isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号