首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microstructural evolution of M250 grade maraging steel subjected to various thermal-aging treatments has been investigated using positron annihilation, X-ray diffraction, hardness and electron microscopy studies. Isochronal aging treatment in the range of 600–900 K, in steps of 100 K, was carried out and positron lifetime, austenite volume fraction and hardness values have been measured. The stages corresponding to point defect dynamics and formation of intermetallics have been clearly identified. Based on these results, measurements were performed on specimens isothermally aged at 755 K from 0.1 to 100 h to elucidate the time evolution of microstructural changes, and the results are discussed.  相似文献   

2.
The effect of near-surface and subsurface stresses on the magnetic Barkhausen emission (MBE) profile has been studied in case-carburised and tempered En36 steel. The high- and low-frequency MBE measurements were made, on both tensile and compressive sides of the rectangular bar specimens with case-depth of 0.95 mm loaded in cantilever beam, under different stress levels as well as after unloading from different higher stress levels. The high-frequency MBE profile showed a single peak while the low-frequency MBE profile showed two peaks. Under applied elastic stresses, both types of measurement showed increase in MBE under tension and decrease in MBE under compression. But, the MBE profiles measured after unloading from higher stresses showed different behaviour. On the tensile side, the high-frequency MBE profile did not change significantly due to pre-stress. But, in the low-frequency MBE profile, the first peak increases and the second peak decreases with increase in pre-stress. On the compressive side, the peak height of high-frequency MBE profile decreased gradually with increase in pre-stress. The first peak of the low-frequency MBE profile also decreased gradually with increase in pres-stress level. But, the second peak of the low-frequency MBE profile decreased by about 10% at a pre-stress level of −1094 MPa and remained more or less the same even after unloading from −1783 MPa. The MBE behaviour has been correlated to the residual stress (RS)-depth profile measured using X-ray diffraction method. This correlation clearly indicates that the high-frequency MBE reflects only the changes in surface RS level. It does not indicate RS changes occurring at depths >20 μm below the surface. The low-frequency MBE profile reflects the changes in the RS distribution occurring in the near-surface as well as deeper subsurface layers.  相似文献   

3.
The paper presents the results of a study on possible application of laser-remelting to repair of narrow and comparatively deep cracks at the surface of highly thermo-mechanically loaded parts made of 12% Ni hot-working maraging tool steel. Laser-remelting of maraging steel is, due to very good weldability and flexibility of the process, very prospective for repair of fatigued surfaces of parts made of this steel at which the presence of surface microcracks may be observed. In addition to the efficiency of crack remelting, the influence of laser-remelting on the heat-affected zone in terms of its microstructure and residual stresses was also studied. The microstructure in the laser-remelted track is cellular/dendritic. In the heat-affected zone surrounding the laser-remelted track, the microstructure varies considerably. A microstructure analysis revealed, in the heat-affected zone, five microstructural zones and sub-zones. Residual stresses measured after laser-remelting are with reference to gradual through-depth changing of the stresses favourable.  相似文献   

4.
Creep damage behaviour of water quenched 5Cr–0.5Mo steel has been studied using magnetic Barkhausen emissions (MBE) technique. The results were compared with the materials having same composition but used in service for 15 years to demonstrate the potentiality of the magnetic technique for in-situ evaluation of extent of creep damage of components. The rms voltage of magnetic Barkhausen signal for the virgin sample decreased at the initial stage of the expended creep life where new carbides are formed. As soon as the growth of the carbides took place at the expense of the smaller ones, MBE voltage started increasing due to the decrease of pinning density. However, in case of 15 years of service exposed sample, growth of carbides already took place and hence MBE voltage increased even during the initial stage of laboratory creep testing. As soon as the void started forming in the samples (both for virgin and service exposed one), the rate of increase of MBE voltage started decreasing. The formations of such cavities were observed through SEM micrograph analysis.  相似文献   

5.
5Cr-0.5Mo steel having initial bainitic microstructure has been aged at 600 °C for 5000 h and subjected to creep at 600 °C/60 MPa. At different lengths of time the tests were interrupted for magnetic measurement using magnetic Barkhausen emissions (MBE) and magnetic hysteresis loop (MHL) techniques. Composition, morphology and distribution of carbides were studied using scanning electron microscopy (SEM). Magnetic softness was observed in the material up to 1600 h of ageing due to the decrease in pinning density for the coarsening of carbides by accumulation of large number of finer carbides. At higher ageing periods the demagnetizing field offered by the large massive carbides causes magnetic hardening. During creep test since the material has been normalized at 50 h of creep test also the structural change in creep test is accelerated, the magnetic softening for the interstitial carbon migration to the grain boundary and stress relaxation has removed in such early periods of ageing. When the carbides started coarsening the number density of the carbides decreased and inter-carbide distance increased which enhances the magnetic softening in the material in the secondary stage of creep. Formation of massive carbides and micro voids at the late tertiary stage of creep offers demagnetizing field causes magnetic hardening before failure of the material.  相似文献   

6.
The Magnetic Barkhausen Noise (MBN) technique can evaluate both micro- and macro-residual stresses, and provides indication about the relevance of contribution of these different stress components. MBN measurements were performed in AISI 1070 steel sheet samples, where different strains were applied. The Barkhausen emission is also analyzed when two different sheets, deformed and non-deformed, are evaluated together. This study is useful to understand the effect of a deformed region near the surface on MBN. The low permeability of the deformed region affects MBN, and if the deformed region is below the surface the magnetic Barkhausen signal increases.  相似文献   

7.
The effects of water quenching process on the microstructure and magnetic property of cold rolled dual phase steel are investigated. Correlations of microstructure, magnetic properties and water quenching parameters are established. The results show that the microstructure of the dual phase steels mainly consists of the ferrite and martensite phase, the martensite volume fraction increases gradually on increasing the holding and quenching temperature. It is found that magnetic properties of dual phase steel are very sensitive to the quenching process. Based on the minor hysteresis loop results, the coercivity and hysteresis loss increase obviously with the increase of quenching temperature, while the remanent induction and the maximum permeability tend to decrease. Furthermore, the magnetic domain structure of the ferrite phase in the presented dual phase steel is observed by magnetic force microscopy. The mechanism of the magnetic property varying with the quenching process is also discussed.  相似文献   

8.
We have measured the orientation and depth dependence of the magnetic Barkhausen noise (MBN) in an industrial pipeline steel sheet. Thin samples were cut out from the sheet cross section at different depths, parallel and transverse to the rolling direction (rolling and transverse samples). The integrated MBN energy has shown no depth dependence for transverse samples. On the other hand, the rolling samples have shown larger MBN noise energy and strong depth dependence.The microstructure of the samples was studied by optical and electron microscopy, parameters related to the shape and the quantity of carbon precipitates and grains were extracted by image processing techniques. The strong depth and orientation dependence of the MBN have been explained by changes of the grain and precipitate microstructure.  相似文献   

9.
Columnar grains can lead to detrimental surface ridging and an inhomogeneous microstructure, although their {1 0 0}〈0 v w〉 texture is considered desirable due to their good magnetic properties in non-oriented silicon steel. Based on the hereditary tendency of {1 0 0}〈0 v w〉 texture, the effects of lubrication and heating rate on texture and on final magnetic properties were investigated using a cast slab containing 100% columnar grains. Hot rolling with lubrication, normalization at low heating rate, two-stage cold rolling, and final annealing at 1000 °C helped achieve high performance. As a result, a new non-oriented silicon steel with high magnetic induction (B50=1.82 T) and low core loss (P1.5=2.35 W/kg) was prepared. The possibility of further performance optimization was also discussed.  相似文献   

10.
This work studied the effects of conductivity, magnetic loss, and complex permittivity when using blended textiles (SSF/PET) of polyester fibers (PET) with stainless steel fibers (SSF) on electromagnetic wave shielding mechanisms at electromagnetic wave frequencies ranging from 30 MHz to 1500 MHz. The 316L stainless steel fiber used in this study had 38 vol% γ austenite and 62 vol% α′ martensite crystalline phases, which was characterized by an x-ray diffractometer. Due to the magnetic and dielectric loss of soft metallic magnetic stainless steel fiber enabled polyester textiles, the relationship between the reflection/absorption/transmission behaviors of the electromagnetic wave and the electrical/magnetic/dielectric properties of the SSF and SSF/PET fabrics was analyzed. Our results showed that the electromagnetic interference shielding of the SSF/PET textiles show an absorption-dominant mechanism, which attributed to the dielectric loss and the magnetic loss at a lower frequency and attributed to the magnetic loss at a higher frequency, respectively.  相似文献   

11.
The evolution of the magnetic phase upon aging at 300–520 °C in a heavily cold-drawn AISI 316L austenitic stainless steel fiber was studied using thermomagnetic analysis (TMA) and magnetic force microscopy with a heating stage. An increasing trend of magnetization from 50 °C to around 470 °C in the heating curves of TMA in austenitic stainless steels after a cold-drawing process was observed. No significant Ms temperature signal in the TMA curve at cooling indicated an increase in magnetization upon cooling period without significant phase transformation. A series of in situ magnetic force microscopy observations reveal a growth of the magnetic domain structure after aging at 300 °C for 2.5 h. Results show that the ferromagnetic increase during aging at lower annealing temperature resulted from the growth of martensite.  相似文献   

12.
The magnetic behaviour and martensitic transformation at cryogenic temperatures (down to 4 K) of the austenite phase of the duplex stainless steel (DSS), 7MoPLUS, were studied. As regards the prediction of Neel temperature, the empirical expressions for austenitic stainless steels are not applicable to the austenite phase of 7MoPLUS, although the composition of the austenite phase falls within the composition ranges within which the expressions were developed. Regarding the prediction of martensitic point Ms, the applicability of ‘old’ and recently developed expressions has been examined. The recently developed expressions, which take into account more alloying elements and their interactions, are not suitable for the austenite phase of 7MoPLUS. But for the ‘old’, simpler expressions, they seem to be valid in the sense that they all predict high stability of the austenite phase. Results obtained from 7MoPLUS were qualitatively the same as those obtained from another DSS, designated as 2205. Reasons for the applicability and inapplicability of these empirical expressions are suggested.  相似文献   

13.
The aim of the paper is to study the deviation of magnetic properties of the magnetic fluids prepared for this study, from ideal (Langevin) behaviour, i.e. to estimate particle interaction influence and dimensions and influence of particle aggregates, as well as to explain the related effects observed. We also determine the particle coupling parameter, the particle nonmagnetic layer thickness, and the particle distribution, which are fundamental for sample characterization. A comparison of the studied magnetic fluids with each other, with respect to microstructure formation and particle interaction strength is finally done. For these purposes, a concentration dependence study, following the proposed “dilution series approach”, is performed. Three series of dilutions of three types of magnetic fluids were prepared and analyzed. Received 27 August 2001  相似文献   

14.
The effect of gradients in hardness, structure and composition in the surface layers on magnetic Barkhausen noise (MBN) was investigated in two widely used low alloy steels. One material was case hardened by induction hardening. The other was case carburised. Similar hardness profiles were produced by the two treatments. It was found that the variation in structure and hardness through the case in the induction-hardened steel had a minor effect on the MBN profile. In contrast, the inhomogeneity in the case-carburised material showed up clearly. This took the form of a broadened or two-peak MBN profile. When the surface layer containing the case was removed by etching, the broadened profile was replaced by a profile with a single peak. It is concluded that the shape and position of the MBN profile is significantly affected when a gradient in microstructure is induced by a gradient in carbon content. On the other hand, a gradient in microstructure induced by heat treatment with a constant carbon level has much less affect on the MBN profile for the induction-hardened steel.  相似文献   

15.
In this paper, distribution of suspended micrometer-size particles in magnetic fluids is investigated. Microstructure formation of particles in magnetic fluids is simulated by using the discrete particle method based on the simplified Stokes dynamics. Not only magnetic particles but also nonmagnetic particles are rearranged in the field direction and form chain-like clusters due to the apparent magnetization in magnetic fluids in the presence of magnetic field. When the diameter of nonmagnetic particles is smaller than that of magnetic particles, nonmagnetic particles move into the empty space of microstructure of magnetic particles, and they are rearranged in the field direction. Uniformity of distribution of particles on the plane perpendicular to the field direction is maintained even after microstructure formation.  相似文献   

16.
The effect of pulsed magnetic primary annealing on the microstructure and texture of two-stage cold-rolled silicon steel is investigated. Specimens are annealed at 700 °C for 1 h under a 1 T pulsed magnetic field along different directions with respect to the sample coordinate system. Crystallographic orientation and grain size are identified by analyzing electron backscattered diffraction pattern. The effects of magnetic field treatment are related to the magnetic field direction. Based on the anisotropy energy of ferromagnetic material during magnetic annealing, a hypothesis is proposed. All of the experimental results in this work support the proposed model.  相似文献   

17.
The Barkhausen Noise Analysis (BNA) technique has been utilised to assess surface integrity of steels. But the BNA technique is not very successful in evaluating surface integrity of ground steels that exhibit poor micro-magnetic response. A new approach has been proposed for the processing of BN signal and two newly proposed parameters, namely ‘count’ and ‘event’, have been shown to correlate linearly with the residual stress upon grinding, with judicious choice of user defined ‘threshold’, even when the micro-magnetic response of the work material is poor. In the present study, residual stress induced upon conventional plunge surface grinding of hardened bearing steel has been investigated along with unhardened bearing steel for benchmarking. Moreover, similar correlation has been established, when primarily compressive stress is induced upon high speed grinding using cBN wheel with moderately deep cut suppressing the micro-magnetic response from the ground medium carbon steel as the work material.  相似文献   

18.
19.
Barium hexaferrite BaFe12O19 powders have been synthesized using the modified co-precipitation method. Modification was performed via the ultrasonication of the precipitated precursors at room temperature for 1 h and the additions of the 2% KNO3, surface active agents and oxalic acid. The results revealed that single phase magnetic barium hexaferrite was formed at a low annealing temperature of 800 °C for 2 h with the Fe3+/Ba2+ molar ratio 8. The microstructure of the powders appeared as a homogeneous hexagonal platelet-like structure using 2% KNO3 as the crystal modifier. A saturation magnetization (60.4 emu/g) was achieved for the BaFe12O19 phase formed at 1000 °C for 2 h with Fe3+/Ba2+ molar ratio 8 using 5 M NaOH solution at pH 10 in the presence of 2% KNO3. Moreover, the saturation magnetization was 52.2 emu/g for the precipitated precursor at Fe3+/Ba2+ molar ratio 12 in was achieved for the precipitated precursor ultrasonicated for 1 h and then annealed at 1200 °C for 2 h. Coercivities from 956.9 to 4558 Oe were obtained at different synthesis conditions.  相似文献   

20.
In this work, the evolution of microstructure, texture and magnetic properties of non-oriented 1.3% silicon steel processed using the twin-roll strip casting was investigated, especially under different solidification structures. A number of microstructures about the as-cast strips show that the initial solidification structure of casting a strip can be controlled by the melt superheats. The microstructures with the average grain size of ∼100–400 μm can be obtained in strips when the melt superheats are from 20 to 60 °C. A nearly random, diffuse, homogeneous texture under a low melt superheat, but comparatively developed {100} oriented grains are formed under a high melt superheat through the cast strip thickness. The relatively low core loss and high magnetic induction can be obtained in the cold rolled and annealed sheets when increasing the initial grain size of cast-strip. The textures in annealed sheets with coarse initial grain size are characterized by the relatively strong Goss component and {001} fiber but weak γ-fiber component, which lead to the high permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号