首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present experimental investigation was focused on the study of the simultaneous influence of the water-based ferrofluid and static magnetic field exposure on young cereal plants. Water-based ferrofluid, stabilized with citric acid was added daily in various concentrations, ranging between 10 and 250 μL/L, in the culture medium of maize (Zea mays) plants in their early ontogenetic stages. The used static magnetic field was about 50 mT. In order to investigate the biochemical changes of chlorophylls and total carotenoids, spectrophotometric measurements were carried out, that revealed stimulatory effects of ferrofluid and magnetic exposure upon the studied plant species.  相似文献   

2.
In this work the first fast stage of the biodegradation in vivo of magnetic ferrofluid was investigated. The appearance of a paramagnetic doublet was observed in M?ssbauer spectra of mouse liver within 2?h after intravenous injection of the ferrofluid. It was shown that nanosized superparamagnetic particles were combined into groups in the initial magnetic beads of the ferrofluid and were connected inside each group by magnetic dipole interaction. It was found that the appearance of a paramagnetic doublet in the spectrum of mouse liver is caused by the decrease of the magneto-dipole interaction between the superparamagnetic nanoparticles.  相似文献   

3.
Ferrofluid spin-up flow is studied within a sphere subjected to a uniform rotating magnetic field from two surrounding spherical coils carrying sinusoidally varying currents at right angles and 90° phase difference. Ultrasound velocimetry measurements in a full sphere of ferrofluid shows no measureable flow. There is significant bulk flow in a partially filled sphere (1-14 mm/s) of ferrofluid or a finite height cylinder of ferrofluid with no cover (1-4 mm/s) placed in the spherical coil apparatus. The flow is due to free surface effects and the non-uniform magnetic field associated with the shape demagnetizing effects. Flow is also observed in the fully filled ferrofluid sphere (1-20 mm/s) when the field is made non-uniform by adding a permanent magnet or a DC or AC excited small solenoidal coil. This confirms that a non-uniform magnetic field or a non-uniform distribution of magnetization due to a non-uniform magnetic field are causes of spin-up flow in ferrofluids with no free surface, while tangential magnetic surface stress contributes to flow in the presence of a free surface.Recent work has fitted velocity flow measurements of ferrofluid filled finite height cylinders with no free surface, subjected to uniform rotating magnetic fields, neglecting the container shape effects which cause non-uniform demagnetizing fields, and resulting in much larger non-physical effective values of spin viscosity η′∼10−8−10−12 N s than those obtained from theoretical spin diffusion analysis where η′≤10−18 N s. COMSOL Multiphysics finite element computer simulations of spherical geometry in a uniform rotating magnetic field using non-physically large experimental fit values of spin viscosity η′∼10−8−10−12 N s with a zero spin-velocity boundary condition at the outer wall predicts measureable flow, while simulations setting spin viscosity to zero (η=0) results in negligible flow, in agreement with the ultrasound velocimetry measurements. COMSOL simulations also confirm that a non-uniform rotating magnetic field or a uniform rotating magnetic field with a non-uniform distribution of magnetization due to an external magnet or a current carrying coil can drive a measureable flow in an infinitely long ferrofluid cylinder with zero spin viscosity (η=0).  相似文献   

4.
Thermal management of electronic devices is presently a serious concern. This article investigates the thermal performance of a five-turn open-loop pulsating heat pipe in both start-up and steady thermal conditions. The effects of working fluid, namely water and ferrofluid, heat input, charging ratio, ferrofluid concentration, orientation, as well as application of magnetic field, are explored. Experimental results show that using ferrofluid enhances the thermal performance in comparison with the case of distilled water under certain conditions. In addition, applying a magnetic field on the open-loop pulsating heat pipe charged with ferrofluid improves its thermal performance. Charging ratios that lead to lower thermal are mentioned. Optimum concentration of ferrofluid in steady-state performance is 2.5 g/L. This study helps to design electronic cooling devices more efficiently.  相似文献   

5.
It is reported a novel method to prepare magnetic core (iron oxide spinels)–shell (silica) composites containing well-dispersed magnetic nanoparticles in aqueous solution. The synthetic process consists of two steps. In a first step, iron oxide nanoparticles obtained through co-precipitation are dispersed in an aqueous solution containing tetramethylammonium hydroxide; in a second step, particles of this sample are coated with silica, through hydrolyzation of tetraethyl orthosilicate. The intrinsic atomic structure and essential properties of the core–shell system were assessed with powder X-ray diffraction, Fourier transform infrared spectrometry, Mössbauer spectroscopy and transmission electron microscopy. The heat released by this ferrofluid under an AC-generated magnetic field was evaluated by following the temperature evolution under increasing magnetic field strengths. Results strongly indicate that this ferrofluid based on silica-coated iron oxide spinels is technologically a very promising material to be used in medical practices, in oncology.  相似文献   

6.
A study of a diester based Fe3O4 ferrofluid has been made over a wide temperature range, 4.2 K < T < 380 K, using static magnetic and ac susceptibility measuring methods. Analysis of the data yields information on the anisotropy constant, grain size distribution and clustering of the particles in the ferrofluid.  相似文献   

7.
The transmission light intensity method is carried out on a classical platform to study the reciprocity of Faraday effect in water-based Fe3O4 ferrofluid and its diluents. Setting the polarization direction of the analyzer at an angle of 45° to that of the polarizer, the switchable DC magnetic field and the alternating magnetic field are imposed to ferrofluid. The ferrofluid film is replaced by magneto-optical glass for contrastive experiments. The results indicate that ferrofluid is different with magneto-optical glass. Even though the direction of magnetic field is reversed, the rotation direction of the polarized light does not change for ferrofluid. The theoretical model of magneto-optical rotation was used to describe the origin of the reciprocity of Faraday effect in ferrofluid and the non-reciprocity in magneto-optical glass. These findings suggest that the magnetic moments of nanoparticles in ferrofluid tend to the same orientation with the magnetic field because of the rotation of particles.  相似文献   

8.
The magnetization behaviors of ferrofluids based on γ-Fe2O3/Ni2O3 composite nanoparticles of size about 11 nm have been investigated. The dipole coupling constant λ of these particles is so small (0.43) that they cannot form aggregates through magnetic interaction alone. Experimental results have shown that for a polydisperse ferrofluid with a particle volume fraction of ?V=2.4%, the magnetization curve exhibits quasi-magnetic-hysteresis behavior, i.e., the demagnetization curve lies above the magnetization curve in a high field. However, for a more dilute γ-Fe2O3/Ni2O3 ferrofluid with ?V=0.94%, the magnetization curve does not show such behavior. According to the bidisperse model for polydisperse ferrofluids, these magnetization behaviors may be attributed to field-induced effects of self-assembled pre-existing chain-like aggregates. For such pre-existing chain-like aggregates, the orientation of the moments inside the particles is not co-linear, so that during the magnetization and demagnetization processes, their apparent magnetizations at the high-field limit are different. As a consequence, the magnetization curve of the ferrofluid with ?V=2.4% displays quasi-magnetic-hysteresis.  相似文献   

9.
A ferrofluid has been prepared by thermal decomposition of Fe(CO)5 in an organic liquid. Mössbauer spectroscopy and x-ray diffractometry studies show that the ferrofluid contains small particles of a metallic glass. The particles are only partly oxidized even after exposure of the ferrofluid to air at room temperature for 30 days.  相似文献   

10.
Any single permanent magnet or electromagnet will always attract a magnetic fluid. For this reason it is difficult to precisely position and manipulate ferrofluid at a distance from magnets. We develop and experimentally demonstrate optimal (minimum electrical power) 2-dimensional manipulation of a single droplet of ferrofluid by feedback control of 4 external electromagnets. The control algorithm we have developed takes into account, and is explicitly designed for, the nonlinear (fast decay in space, quadratic in magnet strength) nature of how the magnets actuate the ferrofluid, and it also corrects for electromagnet charging time delays. With this control, we show that dynamic actuation of electromagnets held outside a domain can be used to position a droplet of ferrofluid to any desired location and steer it along any desired path within that domain—an example of precision control of a ferrofluid by magnets acting at a distance.  相似文献   

11.
蒉纪圣  苗永智 《光学学报》1993,13(6):00-505
研究了由非磁性聚苯乙烯颗粒弥散于煤油基Fe_3O_4磁性液体中制备而成的磁性液体复合体.该复合体双折射效应和线二向色性随外磁场变化.在相同的磁场条件下,复合体的双折射效应较纯磁性液体有减弱而二向色性较后者有所增强.文中采用一简化模型对结果给出了解释.  相似文献   

12.
The pair distribution function g(r) for a ferrofluid modeled by a bidisperse system of dipolar hard spheres is calculated. The influence of an external uniform magnetic field and polydispersity on g(r) and the related structure factor is studied. The calculation is performed by diagrammatic expansion methods within the thermodynamic perturbation theory in terms of the particle number density and the interparticle dipole-dipole interaction strength. Analytical expressions are provided for the pair distribution function to within the first order in number density and the second order in dipole-dipole interaction strength. The constructed theory is compared with the results of computer (Monte Carlo) simulations to determine the range of its validity. The scattering structure factor is determined using the Fourier transform of the pair correlation function g(r) ? 1. The influence of the granulometric composition and magnetic field strength on the height and position of the first peak of the structure factor that is most amenable to an experimental study is analyzed. The data obtained can serve as a basis for interpreting the experimental small-angle neutron scattering results and determining the regularities in the behavior of the structure factor, its dependence on the fractional composition of a ferrofluid, interparticle correlations, and external magnetic field.  相似文献   

13.
Investigations of the phase transitions and self-organization in the magnetic aggregates are of the fundamental and applied interest. The long-range ordering structures described in the Tománek's systematization (M. Yoon, and D. Tománek, 2010 [1]) are not yet obtained in the direct molecular dynamics simulations. The resulted structures usually are the linear chains or circles, or, else, amorphous (liquid) formations. In the present work, it was shown, that the thermodynamically equilibrium primary ferrofluid aggregate has either the long-range ordered or liquid phase. Due to the unknown steric layer force and other model idealizations, the clear experimental verification of the real equilibrium phase is still required. The predicted long-range ordered (crystallized) phase produces the faceting shape of the primary ferrofluid aggregate, which can be recognized experimentally. The medical (antiviral) application of the crystallized aggregates has been suggested. Dynamic formation of all observed ferrofluid nanostructures conforms to the Tománek's systematization.  相似文献   

14.
A ferrofluid with ultrasmall magnetic particles (d?3.3 nm) of amorphous Fe1?x C x has been studied by Mössbauer spectroscopy and electron microscopy. The values of the particle size estimated by the two methods are in good agreement. The magnetic anisotropy energy constant,K=(1.0±0.3)×105 J m?3 has been estimated.  相似文献   

15.
Mn1−xZnxFe2O4 (with x   varying from 0.1 to 0.5) ferrite nanoparticles used for ferrofluid preparation have been prepared by chemical co-precipitation method and characterized. Characterization techniques like elemental analysis by atomic absorption spectroscopy and spectrophotometry, thermal analysis using simultaneous TG-DTA, XRD, TEM, VSM and Mossbauer spectroscopy have been utilized. The final cation contents estimated agree with the initial degree of substitution. The Curie temperature (TcTc) and particle size decrease with the increase in zinc substitution. In the case of particles with higher zinc concentration, both ferrimagnetic nanoparticles and particles exhibiting superparamagnetic behavior at room temperature are present. In addition, some of the results obtained by slightly altering the preparation condition are also discussed. The precipitated particles were used for ferrofluid preparation. The fine particles were suitably dispersed in heptane using oleic acid as the surfactant. The volatile nature of the carrier chosen helps in altering the number concentration of the magnetic particles in a ferrofluid. Magnetic properties of the fine particles and ferrofluids are discussed. Ferrofluids having Mn0.5Zn0.5Fe2O4 particles can be used for the energy conversion application utilizing the magnetically induced convection for thermal dissipation.  相似文献   

16.
A stable γ-Fe2O3 paraffin-based ferrofluid was prepared via high energy milling. The magnetic particles were characterized using X-ray diffraction, dynamic light scattering and vibrating sample magnetometer techniques. The rheological properties of the ferrofluid were studied using a standard rotating rheometer. The magnetoviscous effect and thixotropy in the ferrofluid were studied. The formation and destruction of magnetically induced structures and the interactions of nanoparticles and aggregates are discussed.  相似文献   

17.
In the present study, hard ferromagnetic (M-type strontium hexaferrite) SrFe12O19 was co-doped by Zn and Zr for magnetic hyperthermia applications. As a result of the high concentration of single domain SrFe12O19 nanoparticles (suspended in the ferrofluid), they found a large hydrodynamic diameter, which caused a long-time Brownian relaxation under the AC magnetic field. On the other hand, increasing the Zn-Zr content (low concentration of SrFe12O19) led to a drop in anisotropy, which coincided with a short-time N´eel relaxation. All of the substituted samples with a multi-disperse state in ferrofluid exhibited an almost equal amount of the N´eel and Brownian effects. Consequently, the magnetic saturation (Ms) was considered as the dominant factor in the specific absorption rate (SAR) of the substituted samples. Transformation to the mono-disperse state was followed by the decrease of the Brownian relaxation time and hence the increase of the SAR. The interesting point in mono-disperse state was the heat generation of pure SrFe12O19 under the AC magnetic field as a result of the decrement of the Brownian relaxation time.  相似文献   

18.
A ferrofluid based on Fe3O4 nanoparticles dispersed in heavy water D2O is studied using the μSR method. The experiment has been carried out at temperatures 26–300 K. It is found that the diamagnetic (muon) fraction is formed in the ferrofluid in about the same amount as in D2O, but the muon-spin relaxation rate in the ferrofluid is much higher than in D2O. A significant shift of the muon-spin precession frequency in the ferrofluid is observed. It is shown that the shift of the muon precession frequency as a function of the external magnetic field is described by the Langevin function typical of paramagnetic magnetization. The mean magnetic field in the medium due to magnetic-nanoparticle polarization in an external field is experimentally determined. The nanoparticle sizes are estimated.  相似文献   

19.
Low-frequency magnetic properties of ferromagnetic composite wires were studied with and without coating by ferrofluid. Non-magnetic CuBe wires of 0.1 mm diameter were electroplated with FeCoNi layer of 1 μm thickness. Magnetization curves were measured in the frequency range of 10 Hz–3 kHz. The composite CuBe/FeCoNi/ferrofluid material shows a hysteretic behaviour in a small field. The hysteresis loop of ferrofluid covered electroplated wire is not a simple sum of the ferrofluid “wire” plus non-covered wire signals. It indicates an interaction between magnetic wire and ferrofluid which can be revealed by low-frequency measurements. The combination “electroplated wire/ferrofluid” can be considered as a new type of composite magnetic material consisting of solid magnetic core coated by complementary liquid magnetic material. Low-frequency measurements in presence of ferrofluid can be a useful method to study magnetic properties of ferromagnets.  相似文献   

20.
Based on the superparamagnetism of the ferrofluid which can receive the magnetic force after magnetization by the magnetic field, and there is no magnetic hysteresis after demagnetization, this paper presents a dynamic control method of the ferrofluid. The electromagnetic field is directly added to ferroliquid-column in the air domain to achieve the dynamic deflection. The surface tension, gravity force and magnetic force are added to the modified N-S control equation, and the magnetic induction equation is combined. The ferrohydrodynamics (FHD) model is established. The model of volume of fluid (VOF) is presented to describe ferrofluid jetting in the air domain with the secondary development of fluent. The liquid phase distribution and dispersion of ferrofluid are simulated under different magnetic field intensity. The effect of magnetism on its dynamical behavior is analyzed. The results show that with the increase of magnetic field intensity and jet distance, the ferrofluid velocity along the magnetic field direction and the offset increase, and its dispersion is gradually obvious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号