首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type of biosensor has been developed based on detection of nanosized superparamagnetic particles that serve as labels in bioreactions. The method is based on non-linear magnetic material detection by a magnetic field having components at two frequencies f1 and f2. The response is measured at the combinatorial frequencies fi=mf1+nf2, where m and n are integers, e.g., fi=f1±2f2. Several highly sensitive readers of superparamagnetic particles have been designed and used for development of various formats of immunoassays, including those compatible with immunoconcentration and magnetic enrichment of antigens.  相似文献   

2.
We report a study to develop a magnetic system for local delivery of amoxicillin. Magnetite microparticles produced by coprecipitation were coated with a solution of amoxicillin and Eudragit®S100 by spray drying. Scanning electron microscopy, optical microscopy, X-ray powder diffraction and vibrating sample magnetometry revealed that the particles were superparamagnetic, with an average diameter of 17.2 μm, and an initial susceptibility controllable by the magnetite content in the suspension feeding the sprayer. Our results suggest a possible way to treat Helicobacter pylori infections, using an oral drug delivery system, and open prospects to coat magnetic microparticles by spray drying for biomedical applications.  相似文献   

3.
Methods of non-invasive in vivo quantification of magnetic nanoparticles (MP) have been proposed and realized. The methods are based on non-linear MP magnetization at two frequencies and measuring the response at combinatorial frequencies. The first method is developed for real-time study of MP dynamics and their clearance from the blood system of animals. High sensitivity of 3 ng of Fe3O4 in 0.1 ml was achieved for MP detection in mice tail veins. The second technique is proposed for MP detection inside animal tissues by an external probe. The proposed methods could essentially widen capabilities of biomedical research which involves magnetic nanoparticles.  相似文献   

4.
5.
A new active infrared thermography based technique is proposed for defect detection in ferromagnetic specimens using a low frequency alternating magnetic field induced heating. The test specimens (four mild steel specimens with artificial rectangular slots of 8.0, 5.0, 3.3 and 3.0 mm depths) are magnetized using a low frequency alternating magnetic field and by using an infrared camera, the surface temperature is remotely monitored in real time. An alternating magnetic field induces an eddy current in the specimen which increases the specimen temperature due to the Joule’s heating. The experimental results show a thermal contrast in the defective region that decays exponentially with the defect depth. The observed thermal contrast is attributed to the reduction in induction heating due to the leakage of magnetic flux caused by magnetic permeability gradient in the defective region. The proposed technique is suitable for rapid non-contact wide area inspection of ferromagnetic materials and offers several advantages over the conventional active thermography techniques like fast direct heating, no frequency optimization, no dependence on the surface absorption coefficient and penetration depth.  相似文献   

6.
A study on interface states density distribution and characteristic parameters of the In/SiO2/p-Si (MIS) capacitor has been made. The thickness of the SiO2 film obtained from the measurement of the corrected capacitance in the strong accumulation region for MIS Schottky diodes was 220 Å. The diode parameters from the forward bias I-V characteristics such as ideality factor, series resistance and barrier heights were found to be 1.75, 106-112 Ω and 0.592 eV, respectively. The energy distribution of the interface state density Dit was determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height. The interface state density obtained using the I-V characteristics had an exponential growth, with bias towards the top of the valance band, from 9.44×1013 eV−1 cm−2 in 0.329-Ev eV to 1.11×1013 eV−1 cm−2 in 0.527-Ev eV at room temperature. Furthermore, the values of interface state density Dit obtained by the Hill-Coleman method from the C-V characteristics range from 52.9×1013 to 1.11×1013 eV−1 cm−2 at a frequency range of 30kHz-1 MHz. These values of Dit and Rs were responsible for the non-ideal behaviour of I-V and C-V characteristics.  相似文献   

7.
Mosquito flight tones occur during locomotion and courtship and are mostly analyzed using microphones. The use of microphones is impractical for analyzing the wingbeat of non-tethered insects especially if one is interested in studying the frequency content of wingbeats of a large number of insects. In this study we present a practical setting based on a novel 2D optical sensor that we embed inside insectary cages to record the wingbeats of three mosquito species belonging to three different genera, namely Culex pipiens molestus, Anopheles gambiae and Aedes albopictus. We show that this setting allows to automatically create distributions of parameters related to wingbeat frequency and harmonic properties derived from many non-tethered wingbeats and therefore characterize the wingbeat properties of a whole species with increased confidence. Implications for potential applications are discussed.  相似文献   

8.
Large scale ab initio molecular dynamics simulations were performed to investigate how Cu/ultra low-k systems are improved when N is incorporated into the pore-sealing layers. It was found that the high affinity of N to Ta and H gives rise to new phases that prevent H atoms from penetrating the Ta diffusion barrier layer. Consequently, the Ta layer forms organized structures with good barrier performance and electrical conductivity. Furthermore, a continuous ductile film is formed to seal the highly porous polymer dielectrics. Interfacial adhesion between the pore-sealing layer and the dielectrics is also enhanced by inter-diffusion.  相似文献   

9.
Core-shell Co(1−x)NixFe2O4/polyaniline nanoparticles, where the core was Co(1−x)NixFe2O4 and the shell was polyaniline, were prepared by the combination of sol-gel process and in-situ polymerization methods. Nanoparticles were investigated by Fourier transform spectrometer, X-ray diffraction diffractometer, Scanning electron microscope, Differential thermal analysis and Superconductor quantum interference device. The results showed that the saturation magnetization of pure Co(1−x)NixFe2O4 nanoparticles were 57.57 emu/g, but Co(1−x)NixFe2O4/polyaniline composites were 37.36 emu/g. It was attributed to the lower content (15 wt%), smaller size and their uneven distribution of Co(1−x)NixFe2O4 nanoparticles in the final microsphere composites. Both Co(1−x)NixFe2O4 and PANI/Co(1−x)NixFe2O4 showed superparamagnetism.  相似文献   

10.
We present a general argument which suggests that the Bartels–Lipatov–Vacca Odderon intercept should be equal to one to all orders in the perturbation theory. The argument is based on the validity of the so-called omega-expansion in the high energy limit. It can be further supported by the analogous pattern observed in the case of the anomalous dimensions which is a consequence of the momentum sum rule. In addition, we conjecture that the BFKL kernel should satisfy the transverse momentum sum rule. Finally, it is shown that the higher order kinematical effects do not change the BLV Odderon intercept.  相似文献   

11.
12.
First-principles calculations have been carried out to study the electronic structure and magnetic properties of the Fe3Zn compound with the full-potential linearized augmented-plane wave (FLAPW) method. The results indicate a lower magnetostriction for Fe3Zn as compared to Galfenol (Fe-Ga), as a result of a weaker spin-orbit coupling, which is due to a smaller magnetic moment induced on the Zn atom. With the Zn addition to Fe the bulk modulus and the cohesive energy (per atom) decrease, whereas the electronic specific heat coefficient γ has a substantial increase.  相似文献   

13.
Retrospective analyses of clinical dynamic contrast-enhanced (DCE) MRI studies may be limited by failure to measure the longitudinal relaxation rate constant (R1) initially, which is necessary for quantitative analysis. In addition, errors in R1 estimation in each individual experiment can cause inconsistent results in derivations of pharmacokinetic parameters, Ktrans and ve, by kinetic modeling of the DCE-MRI time course data. A total of 18 patients with lower extremity osteosarcomas underwent multislice DCE-MRI prior to surgery. For the individual R1 measurement approach, the R1 time course was obtained using the two-point R1 determination method. For the average R10 (precontrast R1) approach, the R1 time course was derived using the DCE-MRI pulse sequence signal intensity equation and the average R10 value of this population. The whole tumor and histogram median Ktrans (0.57±0.37 and 0.45±0.32 min−1) and ve (0.59±0.20 and 0.56±0.17) obtained with the individual R1 measurement approach are not significantly different (paired t test) from those (Ktrans: 0.61±0.46 and 0.44±0.33 min−1; ve: 0.61±0.19 and 0.55±0.14) obtained with the average R10 approach. The results suggest that it is feasible, as well as practical, to use a limited-population-based average R10 for pharmacokinetic modeling of osteosarcoma DCE-MRI data.  相似文献   

14.
ShiGang Wu  Feng Zhang 《Optik》2011,122(1):1-5
Structures, spectra and surface topographies of as-deposited and annealed AgOx films have been investigated by an X-ray diffractometer, a spectrophotometer and an atomic force microscopy (AFM). X-ray diffraction and spectrum results show that the as-deposited AgOx films with high oxygen ratios (x≥0.5) are in amorphous states and Ag crystalline particles will separate out after annealed. AFM results show that the film surface will become much rougher and film thickness will increase greatly after annealed due to the decomposition of AgOx with release of oxygen. Static recording results show that two microstructures of the recording marks can be produced: one is the bubble mark at a low recording power and the other is the rupture bubble with an ablated aperture (hole) in the center at a high recording power. Based on the formation of rupture bubble marks, the near-field optical distribution of a focused Gaussian laser beam through a sub-wavelength aperture (200 nm in diameter) has been simulated using finite-difference-time-domain (FDTD) method. Results show that the spot size can be greatly squeezed with still highly transmitted intensity, which may lead to the super-resolution readout.  相似文献   

15.
Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic semiconductors composed of II-VI compounds Cd1−xCoxX (X=S, Se, Te) at x=0.25. From the calculated results of band structure and density of states, the half-metallic character and stability of ferromagnetic state for Cd1−xCoxS, Cd1−xCoxSe and Cd1−xCoxTe alloys are determined. It is found that the tetrahedral crystal field gives rise to triple degeneracy t2g and double degeneracy eg. Furthermore, we predict the values of spin-exchange splitting energies Δx(d) and Δx(pd) and exchange constants N0α and N0β produced by the Co 3d states. Calculated total magnetic moments and the robustness of half-metallicity of Cd1−xCoxX (X=S, Se, Te) with respect to the variation in lattice parameters are also discussed. We also extend our calculations to x=0.50, 0.75 for S compounds in order to observe the change due to increase in Co.  相似文献   

16.
In this article, the authors developed a high-k HoTiO3 gate dielectric deposited on Si (1 0 0) through reactive cosputtering. They found that the HoTiO3 dielectrics annealed at 800 °C exhibited excellent electrical properties such as high capacitance value, small density of interface state, almost no hysteresis voltage, and low leakage current. This phenomenon is attributed to the decrease in intrinsic defect (related to oxygen vacancy) due to a rather well-crystallized HoTiO3 structure and composition observed by X-ray diffraction, secondary ion mass spectrometry, and X-ray photoelectron spectroscopy, respectively.  相似文献   

17.
In this paper we discuss the application of ToF-SIMS with an Au3+ primary ion beam, combined with principal components analysis (PCA) and discriminant function analysis (DFA) for the identification of individual strains of two Bacillus species. The ToF-SIMS PC-DFA methodology is capable of distinguishing bacteria at the strain level based on analysis of surface chemical species. By classifying the data using hierarchical cluster analysis (HCA) we are able to show quantitative separation of species and of these strains. This has taxonomic implications in the areas of rapid identification of pathogenic microbes isolated from the clinic, food and environment.  相似文献   

18.
A series of rare-earth doped BiFeO3 samples, Bi1−xRxFeO3 (x=0-1, R=La, Nd, Sm, Eu and Tb), were prepared in this work. X-ray diffraction analysis showed that the structure of rare-earth doped BiFeO3 was transformed from rhombohedral lattice to orthorhombic one by increasing x. The lattice constants and unit-cell volume decreased with the increasing of the doping content, while both the Néel temperature and magnetization were enhanced. A magnetic phase transition was observed at about 35 K for BiFeO3. The variation of the magnetization with temperature depended on applied field strength and magnetizing history, which was explained according to the antiferromagnetic exchange interaction between Fe and R sites in Bi1−xRxFeO3(x>0). The magnetocrystalline anisotropy contributed by Fe sublattice gave rise to a large coercivity in BixNd1−xFeO3 with an orthorhombic structure.  相似文献   

19.
20.
Zn1−xCrxTe (x=0.05) films were prepared by thermal evaporation onto glass substrates. X-ray diffraction (XRD) was used to determine the crystalline quality of the ZnTe:Cr film. Magnetic force microscopy (MFM) investigation has shown a non-uniform distribution of magnetic domains with an average size of 4 nm at room temperature. SQUID measurements have further shown that the non-uniform distribution of domains does not affect the room temperature ferromagnetism of this material. Electron spin resonance spectroscopy (ESR) was done to determine the Cr valence state in the ZnTe lattice. Magnetic circular dichroism (MCD) analysis was used to confirm the ZnCrTe phase contributing to the ferromagnetic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号