首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new technique, which utilizes the interlayer diffusion, for preparation of self-assembled nanodot magnetic structures has been proposed. L10-phase Pt/FeCu and Pt/FeAg films have been successfully synthesized by this technique. Both the coercivity of Pt/FeCu and Pt/FeAg films exhibited, respectively 4.1 and 8.0 kOe in perpendicular direction. Pt/Fe and Pt/FeAg films show positive values, while Pt/FeCu shows negative value in δm plot. The results indicate that the exchange coupling between the grains has been decoupled in the self-assembled nanodot structure in Pt/FeCu film.  相似文献   

2.
The microstructure and magnetic properties of FePt films grown on Cr and CrW underlayers were investigated. The FePt films that deposited on Cr underlayer show (2 0 0) orientation and low coercivity because of the diffusion between FePt and Cr underlayer. The misfit between FePt magnetic layer and underlayer increases by small addition of W element in Cr underlayer or using a thin Mo intermediate layer, which is favorable for the formation of (0 0 1) orientation and the transformation of FePt from fcc to fct phase. A good FePt (0 0 1) texture was obtained in the films with Cr85W15 underlayer with substrate temperature of 400 °C. The FePt films deposited on Mo/Cr underlayer exhibit larger coercivity than that of the films grown on Pt/Cr85W15 because 5 nm Mo intermediate layer depressed the diffusion of Cr into magnetic layer.  相似文献   

3.
The field dependence of spin and orbital magnetic moments of Fe in L10 FePt magnetic thin films was investigated using X-ray magnetic circular dichroism (XMCD). The spin and orbital moments were calculated using the sum rules; it was found that the spin and orbital moment of Fe in L10 FePt films are ∼2.5 and 0.2 μB, respectively. The relative XMCD asymmetry at Fe L3 peak on the dependence of applied field suggested that the majority magnetic moment of L10 FePt films resulted from Fe.  相似文献   

4.
FePt:Ag nanocomposite films were prepared by pulsed filtered vacuum arc deposition system and subsequent rapid thermal annealing on SiO2/Si(1 0 0) substrates. The microstructure and magnetic properties were investigated. A strong dependence of coercivity and ordering of the face-central tetragonal structure on both Ag concentration and annealing temperature was observed. With Ag concentration of 22% in atomic ratio, the coercivity got to 6.0 kOe with a grain size of 6.7 nm when annealing temperature was 400 °C.  相似文献   

5.
We have studied the thermal stability of L10 FePt thin films and Fe–FePt exchange-spring (ES) bilayers grown on (1 0 0) MgO by RF sputtering. The viscosity curves showed both for FePt films and bilayers a clear logarithmic decay of magnetization. Moreover, it was possible to evaluate the viscosity coefficient S for different applied reverse fields and the activation volumes at the coercivity. The latter values were then related to structural, magnetic and morphological measurements performed on the samples.  相似文献   

6.
Effects of Mn substitution for Co and Fe on the structural and magnetic properties of inverse-spinel CoFe2O4 have been investigated. MnxCo1−xFe2O4 and MnyCoFe2−yO4 thin films were prepared by a sol–gel method. The observed increase of the lattice constant of MnxCo1−xFe2O4 indicates that Mn2+ ions substitute the octahedral Co2+ sites. Conversion electron Mössbauer spectroscopy data indicate that a fraction of octahedral Co2+ ions exchange sites with tetrahedral Fe3+ ions through Mn doping. Vibrating-sample magnetometry data exhibit a large increase of saturation magnetization for both MnxCo1−xFe2O4 and MnyCoFe2−yO4 films compared to that of the CoFe2O4 film. Such enhancement of magnetization can be explained in terms of a breaking of ferrimagnetic order induced by the Co2+ migration.  相似文献   

7.
A three-dimensional micromagnetic model with non-uniform grain size distribution has been built up to study the magnetization process in FePt L10 perpendicular media. A 3D model of a single FePt magnetic grain is also set up for comparison. The high magneto-crystalline anisotropy Ku results in a short exchange length lex in FePt nanograins. Therefore a magnetic grain is divided into smaller grids on the order of lex. The simulated perpendicular and longitudinal loops are consistent with experiments, and it is explained why the measured perpendicular Hc is relatively smaller compared with the saturation field of the longitudinal loop in the FePt perpendicular medium.  相似文献   

8.
Anomalous magnetization processes and non-symmetrical domain wall displacements in the minor loop of L10 FePt particulate films were investigated by magnetization measurements and in situ magnetic force microscopy. Magnetization (M) decreases dramatically on increasing the magnetic field to ∼3 kOe after which M becomes small and constant in the range of 5–20 kOe as observed in the successive measurement of minor loops. The domain wall displacement is non-symmetrical with respect to the field direction. The anomalous magnetization behavior was attributed to the non-symmetrical domain wall displacement and large magnetic field required for domain wall nucleation. Energy calculations from modeling suggest that non-symmetrical domain wall displacement is caused by the existence of metastable domains in which the domain edges are stuck to the particle boundaries.  相似文献   

9.
FePt multilayer composite films with and without B4C interlayer have been prepared by magnetron sputtering, respectively, and subsequent annealing in vacuum. It was found that the B4C layers effectively serve as spacers to separate the FePt layers, enhancing (0 0 1) orientation of FePt alloy. Our results show that highly (0 0 1) oriented FePt/B4C films have significant potential as perpendicular recording media.  相似文献   

10.
Co(0 0 0 1)hcp/Fe(1 1 0)bcc epitaxial magnetic bi-layer films were successfully prepared on SrTiO3(1 1 1) substrates. The crystallographic properties of Co/Fe epitaxial magnetic bi-layer films were investigated. Fe(1 1 0)bcc soft magnetic layer grew epitaxially on SrTiO3(1 1 1) substrate with two type variants, Nishiyama–Wasserman and Kurdjumov–Sachs relationships. An hcp-Co single-crystal layer is obtained on Ru(0 0 0 1)hcp interlayer, while hcp-Co layer formed on Au(1 1 1)fcc or Ag(1 1 1)fcc interlayer is strained and may involve fcc-Co phase. It has been shown possible to prepare Co/Fe epitaxial magnetic bi-layer films which can be usable for patterned media application.  相似文献   

11.
Transparent pure and Fe-doped SnO2 thin films were grown by pulsed laser deposition technique on LaAlO3 substrates. X-ray diffraction shows that the films are polycrystalline and have the rutile structure. Surprisingly, the pure film presents magnetic-like behavior at room temperature with a saturated magnetization of almost one-third of the doped film (∼3.6 and 11.3 emu/g, respectively) and its magnetization could not be attributed to any impurity phase. Taking into account the magnetic moment measured in the pure film, the effective contribution of the impurity in the doped one can be inferred to be ∼2 μB per Fe atom. A large magnetic moment was also predicted by an ab initio calculation in the doped system, which increases if an oxygen vacancy is present near the Fe impurity.  相似文献   

12.
L10 ferromagnetic phase FePt nanoparticles containing Ag atoms (FePtAg) were synthesized by means of a liquid phase process, followed by annealing. The addition of Ag to FePt nanoparticles permits annealing to be conducted at a lower temperature (350 °C). This is further accompanied by a subsequent transformation in the crystal phase from the FCC superparamagnetic phase to the FCT (L10) ferromagnetic phase. The effects of annealing temperature and the Ag atoms inside the nanoparticles on the magnetic properties of the FePt nanoparticles have been studied. Using electron spectroscopy for the chemical analysis (ESCA), Ag atoms in the L10 phase FePtAg nanoparticles were found to be localized on the surface region of the annealed nanoparticles. The Ag atoms function to inhibit the oxidation of FePt, causing the particles to become more stable and to have ferromagnetic properties.  相似文献   

13.
Transparent pure and Cu-doped (2.5, 5 and 10 at.%) anatase TiO2 thin films were grown by pulsed laser deposition technique on LaAlO3 substrates. The samples were structurally characterized by X-ray absorption spectroscopy and X-ray diffraction. The magnetic properties were measured using a SQUID. All films have a FM-like behaviour. In the case of the Cu-doped samples, the magnetic cycles are almost independent of the Cu concentration. Cu atoms are forming CuO and/or substituting Ti in TiO2. The thermal treatment in air promotes the CuO segregation. Since CuO is antiferromagnetic, the magnetic signals present in the films could be assigned to Cu substitutionally replacing cations in TiO2.  相似文献   

14.
FePt (20 nm) films with AgCu (20 nm) underlayer were prepared on thermally oxidized Si (0 0 1) substrates at room temperature by using dc magnetron sputtering, and the films annealed at different temperature to examine the disorder–order transformation of the FePt films. It is found that the ordered L10 FePt phase can form at low annealing temperature. Even after annealing at 300 °C, the in-plane coercivity of 5.2 kOe can be obtained in the film. With increase in annealing temperature, both the ordering degree and coercivity of the films increase. The low-temperature ordering of the films may result from the dynamic stress produced by phase separation in AgCu underlayer and Cu diffusion into FePt phase during annealing.  相似文献   

15.
In this paper we report results on the synthesis and magnetic properties of L10 FePt nanocomposite films. Three fabrication methods have been developed to produce high-anisptropy FePt films: non-epitaxial growth of (0 0 1)-oriented FePt:X (X=Ag, C) composite films that might be used for perpendicular media; monodispersed FePt(CFx) core–shell nanocluster-assembled films grown with a gas-aggregation technique and having uniform cluster size and narrow size distribution; and template-mediated self-assembled FePt clusters prepared with chemical synthesis by a hydrogen reduction technique, which has a high potential for controlling both cluster size and orientation. The magnetic properties are controllable through variations in the nanocluster properties and nanostructure. Analytical and numerical simulations have been done for these films, providing better understanding of the magnetization reversal mechanisms. The films show promise for development as magnetic recording media at extremely high areal densities.  相似文献   

16.
(Ga1−xMnx)N/GaN digital ferromagnetic heterostructures (DFHs) and (Ga1−xMnx)N/GaN grown on GaN buffer layers by using molecular beam epitaxy have been investigated. The photoluminescence (PL) spectra showed band-edge exciton transitions. They also showed peaks corresponding to the neutral donor-bound exciton and the exciton transitions between the conduction band and the Mn acceptor, indicative of the Mn atoms acting as substitution. The magnetization curves as functions of the magnetic field at 5 K indicated that the saturation magnetic moment in the (Ga1−xMnx)N/GaN DFHs decreased with increasing Mn mole fraction and that the saturation magnetic moment and the coercive field in the (Ga1−xMnx)N/GaN DFHs were much larger than those in (Ga1−xMnx)N thin films. These results indicate that the (Ga1−xMnx)N/GaN DFHs hold promise for potential applications in spintronic devices.  相似文献   

17.
(Ga1−xMnx)N thin films grown on GaN buffer layers by using molecular beam epitaxy were investigated with the goal of producing diluted magnetic semiconductors (DMSs) with band-edge exciton transitions for applications in optomagnetic devices. The magnetization curve as a function of the magnetic field at 5 K indicated that ferromagnetism existed in the (Ga1−xMnx)N thin films, and the magnetization curve as a function of the temperature showed that the ferromagnetic transition temperature of the (Ga1−xMnx)N thin film was above room temperature. Photoluminescence and photoluminescence excitation spectra showed that band-edge exciton transitions in (Ga1−xMnx)N thin films appeared. These results indicate that the (Ga1−xMnx)N DMSs with a magnetic single phase hold promise for potential applications in spin optoelectronic devices in the blue region of the spectrum.  相似文献   

18.
An in-plane magnetic anisotropy of FePt film is obtained in the MgO 5 nm/FePt t nm/MgO 5 nm films (where t=5, 10 and 20 nm). Both the in-plane coercivity (Hc∥) and the perpendicular magnetic anisotropy of FePt films are increased when introducing an Ag-capped layer instead of MgO-capped layer. An in-plane coercivity is 3154 Oe for the MgO 5 nm/FePt 10 nm/MgO 5 nm film, and it can be increased to 4846 Oe as a 5 nm Ag-capped layer instead of MgO-capped layer. The transmission electron microscopy (TEM)-energy disperse spectrum (EDS) analysis shows that the Ag mainly distributed at the grain boundary of FePt, that leads the increase of the grain boundary energy, which will enhance coercivity and perpendicular magnetic anisotropy of FePt film.  相似文献   

19.
NdFeNbB with the additions of Dy2O3 and Sn permanent magnets have been attained by means of powder-blending technique, and their magnetic properties, temperature performance and microstructure were studied in this paper. The addition of just 2.0 wt% Dy2O3 or 0.3 wt% Sn proved to be very effective in improving the permanent magnetic properties of NdFeNbB magnets. Dy2O3 additions result in the increase in the Hci and temperature dependence due to the increase of Tc, formation of (NdDy)-rich phase and grain refinement of Φ phase. This improvement of the coercivity stability of the magnets from the addition of Sn is attributed to the smoothing effect of the Sn addition at the grain boundaries. The magnetic properties, the temperature dependence and Curie temperature of NdFeNbB with Dy2O3 and Sn combined addition were found to be considerably improved. From the X-ray diffraction, SEM-EDAX studies and the thermo-magnetic study, the improved properties due to the solution of Dy and Sn to the Φ phase, the reduced Neff and the smaller Φ phase.  相似文献   

20.
FePt and FePt/Cr films were epitaxially grown on MgO (2 0 0) substrates at 350 °C by DC magnetron sputtering. The structural properties and epitaxial relationship are investigated by high-resolution X-ray diffraction (XRD). The XRD spectra revealed that both FePt and FePt/Cr films had a (0 0 1) preferred orientation. However, FePt films with Cr underlayers had a larger a and a smaller c than those of the samples without Cr underlayers. Furthermore, the FePt (0 0 1) peak characterized by its rocking curves became less pronounced when the Cr underlayer was applied. The off-spectra from the MgO (1 1 1), Cr (1 0 1) and FePt (1 1 1) demonstrated that the epitaxial relationship between the FePt film, Cr underlayer and MgO substrate was confirmed to be FePt (0 0 1)<100> || Cr (1 0 0)<1 1 0> || MgO (1 0 0)<0 0 1>. The domain size and Ms decreased when the Cr underlayer was applied due to the diffusion of Cr and the existence of the initial layer between Cr and FePt layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号