首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We report an enhancement of antibacterial properties of Ag nanoparticles (NPs) synthesized at room temperature using leaf extract of Azadirachta indica (Neem) following green synthesis route. To study such antibacterial properties Ag NPs of sizes within 9 nm to 17 nm were synthesized by varying the concentration of Neam leaf extract (NLE). The NP size and size distribution were seen to increase and decrease, respectively, with increase in NLE concentration. Also Ag NPs having a fixed size (~26 nm) was also synthesized by varying the precursor (AgNO3) concentration. It is noticed that concentration of NLE has significant effects on the control of NP size as well as size distribution whereas there is almost no role of precursor concentration of the NP size. All the Ag NPs are found to have face-centred-cubic crystal structure with preferential growth along (111) plane which is stable one. The peak of X-ray diffraction at ~32.4° (2θ value), which is prominent for low concentrations of NLE and precursor, is identified as (101) plane of Ag crystal. The generation and growth of Ag NPs had also been confirmed using electron microscopic studies. These Ag NPs show prominent surface plasmon resonance (SPR) absorption at ~ 420 nm confirming again the genesis of Ag NPs. The SPR peak shifts towards longer wavelength (redshift) with a corresponding reduction in full width at half maximum with increase in NP size. All of the samples containing Ag NPs show a broad blue photoluminescence (PL) emission at ~ 471 nm. Emission peak is seen to redshift with increase in NP size and is consistent with the optical absorption data. Such PL emission is argued as due to interband transition or plasmon luminescence. Being biocompatible of the green synthesis process, antibacterial properties of these Ag NPs were studies in details considering all the samples (with varied NP size for one set and with fixed NP size for other set of samples). As per our knowledge this is the first report of size related total study of Ag NPs, showing increased antibacterial effect as size decreased and equal antibacterial effect as size equals. It is found that smaller Ag NPs has enhanced antibacterial effects due to large surface area to volume ratio in comparison with bigger sized Ag NPs.  相似文献   

2.
Groundwater remediation using iron oxide and zero-valent iron nanoparticles (NPs) can be effective, but is limited in many applications due to the NP strong retention in groundwater-saturated porous media after injection, the passivation of the porous surface, and the high cost of nanomaterials versus macro scale iron. In this study, we investigated transport of bare and polymer-coated 2-line ferrihydrite NPs (30–300 nm) in saturated aquifer sediments. The influence of poly(acrylic acid) (PAA) polymer coatings was studied on the colloidal stability and transport in sediments packed column tests simulating groundwater flow in saturated sediments. In addition, the influence of calcium cations was investigated by transport measurements using sediments with calcium concentrations in the aqueous phase ranging from 0.5 (typical for most sediments) to 2 mM. Measurements were also made of zeta potential, hydrodynamic diameter, polymer adsorption and desorption properties, and bio-availability of PAA-coated NPs. We found that NP transport through the saturated aquifer sediments was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. We further discovered that PAA coatings enhanced NP transport, compared to bare NPs, in all calcium-containing experiments tested, however, the presence of calcium always exhibited a negative effect on NP transport. In tests of bioavailability, the iron reduction rate of the coated and bare NPs by Geobacter sulfurreducens was the same, which shows that the PAA coating does not significantly reduce NP Fe(III) bioavailability. Our results demonstrate that much improved transport of iron oxide NP can be achieved in saturated aquifer sediments by introducing negatively charged polyelectrolytes and optimizing polymer concentrations, and furthermore, these coated NPs retain their bioavailability that is needed for applications in bio-environmental remediation.  相似文献   

3.
Encapsulation of enzymes with enhanced activity and recyclability in water‐in‐oil Pickering emulsions is a simple and efficient method for their immobilization; however, the effect produced by the structure of colloidal particles on the stabilization of the Pickering emulsion for enzyme catalysis has not been investigated in detail. In this study, four types of hydrophobic Fe3O4@SiO2 nanoparticles (NPs) with similar chemical compositions, particle diameters, but different surface characteristics have been prepared and utilized for enzyme encapsulation in various water‐in‐oil magnetic Pickering emulsions, after which the relationship between NPs structure, size of emulsions droplets, and enzyme activity is examined. The obtained results indicate that (i) the more hydrophobic Fe3O4@SiO2 NPs cause the higher enzyme activity; (ii) the higher hydrophobicity of oil phase also increases the enzyme activity, especially for Fe3O4@w‐SiO2 NPs which form in the solvent of water. The results are mainly attributed to the higher specific surface area of emulsion droplets and interfacial mass transfer of substrates through the interfaces of droplets. The reported data provide new insights into the mechanism of stabilization of Pickering emulsions for enhancing enzyme activity and demonstrate efficient theoretical references for enzyme immobilization and synthesis of stable and active biocatalysts with high recyclability.  相似文献   

4.
Phenol adsorption from aqueous solution was carried out using uncoated and methyl acrylic acid (MAA)-coated iron oxide nanoparticles (NPs), having size <10 nm, as adsorbents. Batch adsorption studies revealed that the phenol removal efficiency of MAA-coated NPs (950 mg g?1) is significantly higher than that of uncoated NPs (550 mg g?1) under neutral to acidic conditions. However, this improvement disappears above pH 9. The adsorption data under optimized conditions (pH 7) were modeled with pseudo-first- and pseudo-second-order kinetics and subjected to Freundlich and Langmuir isotherms. The analysis determined that pseudo-second-order kinetics and the Freundlich model are appropriate for both uncoated and MAA-coated NPs (all R 2 > 0.98). X-ray photoelectron spectroscopy analysis of pristine and phenol-adsorbed NPs revealed core-level binding energy and charge for Fe(2s) and O(1s) on the NP surfaces. The calculations suggest that phenol adsorption onto MAA-coated NPs is a charge transfer process, where the adsorbate (phenol) acts as an electron donor and the NP surface (Fe, O) as an electron acceptor. However, a physisorption process appears to be the relevant mechanism for uncoated NPs.  相似文献   

5.
In this contribution recent results on selective and precise tailoring of triangular gold nanoparticles (NPs) using ns-pulsed laser light are presented. The NPs were prepared by nanosphere lithography and subsequently tailored with ns-pulsed laser light using different fluences and wavelengths. The method is based on the size and shape dependent localized surface plasmon polariton resonance (SPR) of the NPs. We will demonstrate that the gap size between triangular NPs can be tuned from approximately 102±14 nm to 122±11 nm, due to a shape change of the NP from triangular to oblate. These morphological changes are accompanied by a significant shift of the surface plasmon resonance from λSPR=730 nm to λSPR=680 nm. Most importantly if the laser wavelength is chosen such that the dipolar SPR is excited, the hexagonal order of the NPs remains intact after irradiation, in contrast to excitation via the quadrupole SPR or within the interband transition. A tuneable gap size and the conservation of the hexagonal order of the NP array is the precondition for applications, where the NPs should serve as anchor points, e.g. for functional molecular nanowires, which can be used to utilize molecular devices.  相似文献   

6.
A highly dense and uniform layer of Au nanoparticles (NPs) on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film has been produced by the pulsed laser deposition (PLD) technique toward the production of an improved efficiency photovoltaic device. The advantage of PLD over other techniques is the easy and precise control of the Au NPs size and spatial distribution, without needing of further NP surface functionalization. The efficiency enhancement factor related to Au NPs doping has been evaluated in a solar cell based on poly-(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) diffused bilayer. The short-circuit current density, J SC, increases by 18 % and the power conversion efficiency by 22 %, respectively, in comparison with an equivalent device without Au NPs. The optical and morphological properties of the Au NPs layer have been selected in order to evaluate the contribution of the surface plasmon resonance as enhancement factor of the solar cell efficiency, in a range size where light scattering is negligible.  相似文献   

7.
We have fabricated a negative-charged nanoparticle (Heparin-Folate-Tat-Taxol NP, H-F-Tat-T NP) with dual ligands, tumor targeting ligand folate and cell-penetrating peptide Tat, to deliver taxol presenting great anticancer activity for sensitive cancer cells, while it fails to overcome multidrug resistance (MDR) in MCF-7/T cells (taxol-resistant breast cancer cells). Ultrasound (US) can increase the sensitivity of positive-charged NPs thereby making it possible to reverse MDR through inducing NPs’ drug release. However, compared with the negative-charged NPs, positive-charged NPs may cause higher toxic effect. Hence, the combination of negative-charged NPs and US may be an efficient strategy for overcoming MDR. The conventional procedure to treat with NPs followed by US exposure possibly destruct multifunctional NPs resulting in its bioactivity inhibition. Herein, we have further improved the operating approach to eliminate US mechanical damage and keep the integrity of negative-charged NPs: cells are exposed to US with microbubbles (MBs) prior to the treatment of H-F-Tat-T NPs. Superior to the conventional method, US sonoporation affects the physiological property of cancer cells while preventing direct promotion of drug release from NPs. The results of the present study displayed that US in condition (1 MHz, 10% duty cycle, duration of 80 s, US intensity of 0.6 W/cm2 and volume ratio of medium to MBs 20:1) combined with H-F-T-Tat-T NPs can achieve optimal reversal MDR effect in MCF-7/T cells. Mechanism study further disclosed that the individual effect of US was responsible for the enhancement of cell membrane permeability, inhibition of cell proliferation rate and down-regulation of MDR-related genes and proteins. Simultaneously, US sonoporation on resistant cancer cells indirectly increased the accumulation of NPs by inducing endosomal escape of negative-charged NPs. Taken together, the overcoming MDR ability for the combined strategy was achieved by the synergistic effect from individual function of NPs, physiological changes of resistant cancer cells and behavior changes of NPs caused by US.  相似文献   

8.
Chitosan nanoparticles (NPs) exhibit great potential in drug-controlled release systems. A controlled hydrodynamic cavitation (HC) technique was developed to intensify the emulsion crosslinking process for the synthesis of chitosan NPs. Experiments were performed using a circular venturi and under varying operating conditions, i.e., types of oil, addition mode of glutaraldehyde (Glu) solution, inlet pressure (Pin), and rheological properties of chitosan solution. Palm oil was more appropriate for use as the oil phase for the HC-intensified process than the other oil types. The addition mode of water-in-oil (W/O) emulsion containing Glu (with Span 80) was more favorable than the other modes for obtaining a narrow distribution of chitosan NPs. The minimum size of NPs with polydispersity index of 0.342 was 286.5 nm, and the maximum production yield (Py) could reach 47.26%. A positive correlation was found between the size of NPs and the droplet size of W/O emulsion containing chitosan at increasing Pin. Particle size, size distribution, and the formation of NPs were greatly dependent on the rheological properties of the chitosan solution. Fourier transform infrared spectroscopy (FTIR) analysis indicated that the molecular structure of palm oil was unaffected by HC-induced effects. Compared with ultrasonic horn, stirring-based, and conventional drop-by-drop processes, the application of HC to intensify the emulsion crosslinking process allowed the preparation of a finer and a narrower distribution of chitosan NPs in a more energy-efficient manner. The novel route developed in this work is a viable option for chitosan NP synthesis.  相似文献   

9.
The cytotoxic effect of positively charged polystyrene latex nanoparticles (PSL NPs) was compared between planktonic bacterial cells and bacterial biofilms using confocal laser scanning microscopy, atomic force microscopy, and a colony counting method. Pseudomonas fluorescens, which is commonly used in biofilm studies, was employed as the model bacteria. We found that the negatively charged bacterial surface of the planktonic cells was almost completely covered with positively charged PSL NPs, leading to cell death, as indicated by the NP concentration being greater than that required to achieve single layer coverage. In addition, the relationship between surface coverage and cell viability of P. fluorescens cells correlated well with the findings in other bacterial cells (Escherichia coli and Lactococcus lactis). However, most of the bacterial cells that formed the biofilm were viable despite the positively charged PSL NPs being highly toxic to planktonic bacterial cells. This indicated that bacterial cells embedded in the biofilm were protected by self-produced extracellular polymeric substances (EPS) that provide resistance to antibacterial agents. In conclusion, mature biofilms covered with EPS exhibit resistance to NP toxicity as well as antibacterial agents.  相似文献   

10.
Fe nanoparticle (NP)-assembled thin films with different thickness were prepared by femtosecond-pulsed laser deposition using different deposition times. The proper selection of the deposition time allows to control, to a certain degree, the morphology and topology of the deposited Fe nanoparticles (NPs) assembly, fostering non-uniform dense assemblies of NPs, with the consequent reduction of the influence of the exchange interactions on the macroscopic magnetic properties with decreasing thickness. The magnetic behavior of the Fe NP-assembled films with decreasing thickness is characterized by higher coercive field (H c) values (a factor ≈4.5) and a good compromise between the hysteresis loops squareness and moderate exchange interactions, strongly correlated with the NPs topology.  相似文献   

11.
In this work, a ZnO/nanoparticles (NPs) modified carbon ionic liquid paste electrode (ZnO/NP/CILPE) was fabricated and used to investigate the electrochemical behavior of folic acid. ZnO/NP/CILPE was prepared by mixing hydrophilic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim]-[PF6])), ZnO/NPs, graphite powder, and liquid paraffin together. The fabricated ZnO/NP/CILPE showed great electrocatalytic ability to the oxidation of folic acid, and an irreversible oxidation peak appeared at 0.75 V (vs. Ag/AgCl) with improved peak current. Under the optimized conditions of pH 9.0, the plot of peak current vs. folic acid concentration consisted of two linear segments with slopes of 1.776and 0.033 μA/μM in the concentration ranges of 0.05–1.5 μM and 1.5–550.0 μM, respectively. The detection limit was 0.01 μM (3σ). The proposed sensor was successfully applied for the determination of folic acid in fortified food and pharmaceutical samples.  相似文献   

12.
We demonstrate a facile one-step method to synthesize Ni@Pt core–shell nanoparticles (NPs) with a control over the shape and the Pt-shell thickness of the NPs. By adjusting the relative reactivity of the Pt and Ni reagents in ultrasound-assisted polyol reactions, two Ni@Pt NP samples of the same composition (Ni/Pt = 1) and size (3–4 nm) but with different particle shape (octahedral vs. truncated octahedral) and different Pt-shell thicknesses (1–2 vs. 2–3 monolayer) are obtained. The control is achieved by using different Ni reagents, Ni(acac)2 (acac = acetylacetonate) and Ni(hfac)2 (hfac = hexafluoroacetylacetonate). A reaction mechanism that can explain all of the observations is proposed. The Ni@Pt NPs show up to threefold higher mass activity than pure Pt NPs in oxygen reduction reaction. Between the two Ni@Pt NP samples, the one composed of octahedral NPs with the thicker Pt-shell has higher activity than the other.  相似文献   

13.
Shell‐isolated nanoparticles (NPs)‐enhanced Raman spectroscopy (SHINERS) can be potentially applied to virtually any substrate type and morphology. How to take a step forward to prepare SHINERS NPs (SHINs) with superior performance is critical for the practical applications of surface‐enhanced Raman scattering (SERS) in the breadth and depth. Here, we present a method to obtain 120 nm diameter gold NPs coated with ultrathin silica shells (1–4 nm). The silica shell can be controlled growth through carefully tuning a series of parameters, such as amount of 3‐aminopropyl triethoxysilane used, pH, reaction time, and reaction temperature. We compare the enhancement factor of the obtained 120 nm Au with a 4 nm silica shell NPs to the 55 nm Au with a 4 nm silica shell NPs, and the activity of a 120 nm SHINs is nearly 24 times that the 55 nm SHIN from a single particle view. We also compare the enhancement factor of 1 nm silica shell Au@SiO2 NPs with the bare Au NPs. The enhancement factor of 1 nm silica shell Au@SiO2 NPs was found to be about twice that of the bare particles. For a deeper understanding of the source of the giant enhanced electrical field of the 1 nm silica shell Au@SiO2 NPs, we study the plasmonic property of single 1 nm silica shell Au@SiO2 NP on a gold film substrate through correlation of the structure of single NP using SEM with its SPR spectroscopy. We find that the multipolar interaction between the single Au@SiO2 NP and gold film substrate is important for the SERS. Our studies on the performance of 120 nm SHINs and the plasmonic property of these particles can significantly expand the applications of SHINERS technique and improve the understanding of physical nature of SHINs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Polystyrene latex (PSL) nanoparticle (NP) sample is one of the most widely used standard materials. It is used for calibration of particle counters and particle size measurement tools. It has been reported that the measured NP sizes by various methods, such as Differential Mobility Analysis, dynamic light scattering (DLS), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), differ from each other. Deformation of PSL NPs on mica substrate has been reported in AFM measurements: the lateral width of PSL NPs is smaller than their vertical height. To provide a reliable calibration standard, the deformation must be measured by a method that can reliably visualize the entire three dimensional (3D) shape of the PSL NPs. Here we present a method for detailed measurement of PSL NP 3D shape by means of electron tomography in a transmission electron microscope. The observed shape of the PSL NPs with 100 nm and 50 nm diameter were not spherical, but squished in direction perpendicular to the support substrate by about 7.4% and 12.1%, respectively. The high difference in surface energy of the PSL NPs and that of substrate together with their low Young modulus appear to explain the squishing of the NPs without presence of water film.  相似文献   

15.
The extensive production and application of engineered silica nanoparticles (SiO2 NPs) will inevitably lead to their release into the environment. Granular media filtration, a widely used process in water and wastewater treatment plants, has the potential for NP abatement. In this work, laboratory-scale column experiments were performed to study the transport and retention of SiO2 NPs on three widely used porous materials, i.e., sand, anthracite, and granular activated carbon (GAC). Synthetic fluorescent core-shell SiO2 NPs (83 nm) were used to facilitate NP detection. Sand showed very low capacity for SiO2 filtration as this material had a surface with limited surface area and a high concentration of negative charge. Also, we found that the stability and transport of SiO2 NP were strongly dependent on the ionic strength of the solution. Increasing ionic strength led to NP agglomeration and facilitated SiO2 NP retention, while low ionic strength resulted in release of captured NPs from the sand bed. Compared to sand, anthracite and GAC showed higher affinity for SiO2 NP capture. The superior capacity of GAC was primarily due to its porous structure and high surface area. A process model was developed to simulate NP capture in the packed bed columns and determine fundamental filtration parameters. This model provided an excellent fit to the experimental data. Taken together, the results obtained indicate that GAC is an interesting material for SiO2 NP filtration.  相似文献   

16.
Vibrational spectra of ultrafine (~1.8 nm) CdS x Se1?x colloidal nanoparticles (NPs) are studied by resonant Raman scattering (RRS). The detected difference of the shape and spectral position of the longitudinal optical vibration band in comparison with the spectrum of slightly larger NPs (≥ 2 nm) is explained by the dominance of surface atoms as their fraction increases above 50%. The correlation of experimental results with ab initio calculated vibrational spectra and with vibration anharmonicity enhancement as the NP size decreases is discussed.  相似文献   

17.
The Ag–Au compound nanostructure films with controllable patterns of Ag nanoparticle (NP) aggregates were fabricated. A strategy of two‐step synthesis was employed toward the target products. Firstly, the precursor Au NP (17 nm) films were synthesized as templates. Secondly, the Ag NPs (45 nm) were deposited on the precursor films. Three types of Ag NP aggregates were obtained including discrete Ag NPs (discrete type), necklace‐like Ag NP aggregates (necklace type), and huddle‐like Ag NP aggregates (huddle type). The surface‐enhanced Raman scattering (SERS) property was studied on these nanostructures by using the probing molecule of rhodamine 6G under the excitation laser of 514.5 nm. Interestingly, the different types of samples showed different enhancement abilities. A statistical method was employed to assess the enhancement. The relative enhancement factor for each Ag NP was estimated quantitatively under the ratio of 1 : 25 : 18 for the discrete‐type, necklace‐type, and huddle‐type samples at the given concentration of 10−8 mol/l. This research shows that the enhancement ability of each Ag NP is dependent on the aggregate morphology. Moreover, the different enhancement abilities displayed different limit detection concentrations up to 10−8, 10−11, and 10−9 mol/l, separately. The understanding of the relationship between the defined nanostructures and the SERS enhancement is very meaningful for the design of new SERS substrates with better performance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Incorporation of nanoparticles (NPs) into polymer films represents a valuable strategy for achieving a variety of desirable physical, optical, mechanical, and electrical attributes. Here, we describe and characterize the creation of highly fluorescent polymer films by entrapment of fluorescent NPs into polymer matrices through surface-mediated eosin photoinitiation reactions. Performing surface-mediated polymerizations with NPs combines the benefits of a covalently anchored film with the unique material properties afforded by NPs. The effects of monomer type, crosslinker content, NP size, and NP surface chemistry were investigated to determine their impact on the relative amount of NPs entrapped in the surface-bound films. The density of entrapped NPs was increased up to 6-fold by decreasing the NP diameter. Increasing the crosslinking agent concentration enabled a greater than 2-fold increase in the amount of NPs entrapped. Additionally, the monomer chemistry played a significant role as poly(ethylene glycol) diacrylate (PEGDA)-based monomer formulations entrapped a 10-fold higher density of carboxy-functionalized NPs than did acrylamide/bisacrylamide formulations, though the latter formulations ultimately immobilized more fluorophores by generating thicker films. In the context of a polymerization-based microarray biodetection platform, these findings enabled tailoring of the monomer and NP selection to yield a 200-fold improvement in sensitivity from 31 (±1) to 0.16 (±0.01) biotinylated target molecules per square micron. Similarly, in polymerization-based cell staining applications, appropriate monomer and NP selection enabled facile visualization of microscale, sub-cellular features. Careful consideration of monomer and NP selection is critical to achieve the desired properties in applications that employ surface-mediated polymerization to entrap NPs.  相似文献   

19.
《Physics letters. A》2020,384(3):126079
Nowadays, the plasmonic properties of defective transition metal oxides, have attracted great attention in the sensing and catalyst applications. The aim of this paper is to fabricate plasmonic Au-MoOx nanoparticles (NPs) using a facile anodizing in liquid approach to be used as localized surface plasmon resonance (LSPR) hydrogen sensor. Firstly, dark blue MoOx nanosheets with a strong NIR (700–800 nm) LSPR band were obtained. The Au-MoOx NPs (Au size=5–7 nm) were then obtained by adding a gold cation into the blue MoOx liquid base. Thanks to the catalytic properties of Au NP, this system exhibited LSPR hydrogen sensing ability where the LSPR variations allowed us to detect hydrogen in the 0–3% concentration range with a good linearity and possible many data points.  相似文献   

20.
Kinetic aspects of the synthesis of Ag nanoparticles (NPs) by magnetron sputtering are studied by in situ and time-resolved small angle X-ray scattering (SAXS). Part of the NPs are found to become confined within a capture zone at 1–10 mm from the surface of the target and circumscribed by the plasma ring. Three regimes of the NP growth are identified: 1) early growth at which the average NP diameter rapidly increases to 90 nm; 2) cycling instabilities at which the SAXS signal periodically fluctuates either due to expelling of large NPs from the capture zone or due to the axial rotation of the NP cloud; and 3) steady-state synthesis at which stable synthesis of the NPs is achieved. The NP confinement within the capture zone is driven by the balance of forces, the electrostatic force being dominant. On reaching the critical size, large NPs acquire an excessive charge and become expelled from the capture zone via the electrostatic interactions. As a result, significant NP deposits are formed on the inner walls of the aggregation chamber as well as in the central area of the target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号