首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the resistivity (ρ)-temperature (T) patterns in (1-x)La0,7Ca0,3MnO3+xAl2O3 composites (0≤x≤0.05) over a temperature regime of 50-300 K. Al2O3 addition has increased the resistivity of these composites. The Curie temperature (TC) is almost independent on the Al2O3 content and is about 250 K for all the samples, while the metal-insulator transition temperature (TMI) decreases with increasing Al2O3 content. Based on the phenomenological equation for conductivity under a percolation approach, which is dependent on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, we fitted the experimental data (ρT) from 50 to 300 K and find that the activation barrier increases as Al2O3 content increases.  相似文献   

2.
Composite samples (1−x)La0.7Ca0.2Sr0.1MnO3(LCSMO)+x(ZnO) with different ZnO doping levels x have been investigated systematically. The structure and morphology of the composites have been studied by the X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The XRD and SEM results indicate that no reaction occurs between LCSMO and ZnO grains, and that ZnO segregates mostly at the grain boundaries of LCSMO. The magnetic properties reveal that the ferromagnetic order of LCSMO is weakened by addition of ZnO. The results also show that ZnO has a direct effect on the resistance of LCSMO/ZnO composites, especially on the low-temperature resistance. With increase of the ZnO doping level, TP shifts to a lower temperature and the resistance increases. It is interesting to note that an enhanced magnetoresisitance (MR) effect for the composites is found over a wide temperature range from low temperature to room temperature in an applied magnetic field of 3 kOe. The maximum MR appears at x=0.1. The low field magnetoresistance (LFMR) results from spin-polarized tunneling. However, around room temperature, the enhanced MR of the composites is caused by magnetic disorder.  相似文献   

3.
The electrical transport properties and the magnetoresistance of La0.7Ca0.3MnO3/La0.7Sr0.2Ca0.1MnO3 composites are investigated as a function of sintering temperature. On the basis of an analysis by X-ray powder diffraction and scanning electron microscopy we suggest that raising the sintering temperature enhanced the interfacial reaction and creates interfacial phases at the boundaries of the La0.7Ca0.3MnO3 and La0.7Sr0.2Ca0.1MnO3. Results also show that in 3 kOe, and at the Curie temperature, the magnetoresistance value of 14% was observed for the composite sintered at 1300 °C. Based on the phenomenological equation for conductivity under a percolation approach, which depends on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, we fitted the experimental resistivity—temperature data from 50-300 K and find that the activation barrier decreases as temperature is increased.  相似文献   

4.
We report magneto-transport and magnetic properties of (1-x)La0.7Ca0.3MnO3+xAl2O3 composites synthesized through a solid-state reaction method combined with a high energy milling method. Most interestingly, the effective magnetic anisotropy is found to decrease with increase in the non-magnetic insulating Al2O3 phase fraction in the composites. In addition, we observed that the magnitude of low-field magnetoresistance arising from spin-polarized tunneling of conduction electrons, as well as that of high-field magnetoresistance, displays a Curie-Weiss law-like behavior. Finally, we found that the temperature dependence of low and high-field magnetoresistance is controlled predominantly by the nature of temperature response of surface magnetization of the particles.  相似文献   

5.
The coexistence of large positive and negative low-field magnetoresistance (LFMR) in the ferromagnetic La0.7Ca0.3MnO3 thin films with ordered microcrack (MC) distributions is reported. For the films with the highest linear density of MC, the negative LFMR can be up to −60% and rapidly changes to the positive value of 25% at 200 Oe field with the increase of temperature. We discuss the effect based on the spin-polarized tunneling and inhomogeneous magnetic state induced by the natural formations of MC in the films.  相似文献   

6.
The (1−x)La0.67Ca0.33MnO3+xCuO composites have been synthesized by a new liquid phase method. The XRD and SEM measurements reveal that little CuO is soluble in the structure of La0.67Ca0.33MnO3 and is mainly distributed at the grain boundary of La0.67Ca0.33MnO3. As CuO content x increases, the magnetization M values increase until x=0.05 and M values decrease when x further increases at low temperature. For x=0.10, 0.20 and 0.30 composites, double metal-insulator transitions accompanying a single ferromagnetic transition are observed. Large low-field magnetoresistance is achieved for the composites and the largest magnetoresistance appeared when x=0.20.  相似文献   

7.
We report the structural, magentoresistance and electro-magnetic properties of ferromagnet–ferroelectric–type (1−x)La0.7Sr0.3MnO3/xBaTiO3 (with x=0.0%, 3.0%, 6.0%, 12%, 15.0% and 18.0%, in wt%) composites fabricated through a solid-state reaction method combined with a high energy milling method. The insulator–metal transition temperature shifts to a lower temperature and resistivity increases while the feromagnetic–paramagnetic transition temperature remains almost unchanged with the increase of BaTiO3 content. Magnetoresistance of the composites at an applied magnetic field H=3 kOe is enhanced in the wide temperature ranges with the introduction of BaTiO3, which could be explained by the enhanced spin polarized tunneling effect induced by the introduction of BaTiO3. The low-field magnetoresistance of the composite is analyzed in the light of a phenomenological model based on the spin polarized tunneling at the grain boundaries. Furthermore, the temperature dependence of resistivity for this series has been best-fitted by using the adiabatic small polaron and variable range hopping models. These models may be used to explain effect of BTO on the electronic transport properties on high temperature paramagnetic insulating region.  相似文献   

8.
A systematic investigation of the structural, magnetic and electrical properties of a series of nanocrystalline La0.7SrxCa0.3−xMnO3 materials, prepared by high energy ball milling method and then annealed at 900 °C has been undertaken. The analysis of the XRD data using the Win-metric software shows an increase in the unit cell volume with increasing Sr ion concentration. The La0.7SrxCa0.3−xMnO3 compounds undergo a structural orthorhombic-to-monoclinic transition at x=0.15. Electric and magnetic measurements show that both the Curie temperature and the insulator-to-metal transition temperature increase from 259 K and 253 K correspondingly for La0.7Ca0.3MnO3 (x=0) to 353 K and 282 K, respectively, for La0.7Sr0.3MnO3 (x=0.3). It is argued that the larger radius of Sr2+ ion than that of Ca2+ is the reason to strengthen the double-exchange interaction and to give rise to the observed increase of transition temperatures. Using the phenomenological equation for conductivity under a percolation approach, which depends on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, we fitted the resistivity versus temperature data measured in the range of 50-320 K and found that the activation barrier decreased with the raising Sr2+ ion concentration.  相似文献   

9.
The effect of Ni2+ doping on the magnetic and magnetocaloric properties of La0.7Ca0.3MnO3 manganites synthesized via the auto-combustion method is reported. The aim of studying Ni2+-substituted La0.7Ca0.3Mn1 ? xNixO3 (x=0,0.02,0.07, and 0.1) manganites was to explore the possibility of increasing the operating temperature range for the magnetocaloric effect through tuning of the magnetic transition temperature. X-ray diffraction analysis confirmed the phase purity of the synthesized samples. The substitution of Mn3+ ions by Ni2+ ions in the La0.7Ca0.3MnO3 lattice was also corroborated through this technique. The dependence of the magnetization on the temperature reveals that all the compositions exhibit a well-defined ferromagnetic to paramagnetic transition near the Curie temperature. A systematic decrease in the values of the Curie temperature is clearly observed upon Ni2+ doping. Probably the replacement of Mn3+ by Ni2+ ions in the La0.7Ca0.3MnO3 lattice weakens the Mn3+–O–Mn4+ double exchange interaction, which leads to a decrease in the transition temperature and the magnetic moment in the samples. By using Arrott plots, it was found that the phase transition from ferromagnetic to paramagnetic is second order. The maximum magnetic entropy changes observed for the x=0,0.02,0.07, and 0.1 composites was 0.85, 0.77, 0.63, and 0.59 J/kg?K, respectively, under a magnetic field of 1.5 T. In general, it was verified that the magnetic entropy change achieved for La0.7Ca0.3Mn1 ? xNixO3 manganites synthesized via the auto-combustion method is higher than those reported for other manganites with comparable Ni2+-doping levels synthesized via standard solid state reaction. The addition of Ni2+ increases the value of the relative cooling power as compared to that of the parent compound. The highest value of this parameter (~60 J/kg) is found for a Ni-doping level of 2% around 230 K in a field of 1.5 T.  相似文献   

10.
The influence of DC current on the resistivity and phase transition of polycrystalline La0.7Ca0.3MnO3 has been investigated. The specific heat measurement found that charge carriers and ferromagnetic spin-wave contributions were changed after applied DC current. Applying high electric fields leads to the formation of ferromagnetic regions. The resistivity drops abruptly once the percolating current path is established. As current through the sample disappears, the larger ferromagnetic (FM) clusters, however, remain and are frozen in giving a measurable contribution to the specific heat of the system. The larger clusters should give rise to the value of spin-wave stiffness constant (D), as it is expected to increase the strength of the ferromagnetic coupling. The metallic ferromagnetic regions would make the charge carrier delocalization and attribute to specific heat linear term γ.  相似文献   

11.
La0.7Sr0.3MnO3 (LSMO) tunneling magnetoresistance (TMR) junctions have been fabricated on step-edge (0 0 1) SrTiO3 substrates with a high step-edge angle. In the measurement of magnetoresistance (MR) ratio versus external magnetic field H, butterfly-like MR curves are clearly observed. The MR(H  ) curves vary with θθ, the angle between the applied magnetic field and the current direction in the substrate plane, showing anisotropic MR properties. A much broader MR(H) response is observed for the configuration of H perpendicular to the substrate plane. Additionally, the maxima-MR field Hp almost coincides with the coercive field Hc for θ<60°θ<60° but obeys a different form from Hc(θ)Hc(θ). The high-field junction resistance shows an intrinsic sin2θsin2θ angular dependence, while the low-field resistance shows an extrinsic cos(4θ)cos(4θ) angular dependence. The distinctive features are mainly due to the induced magnetization anisotropy in the artificial steps of grain boundaries.  相似文献   

12.
A series of bulk polycrystalline La0.7Ca0.2Sr0.1MnO3 (LCSMO)/Pd composites were prepared by chemical plating and structural, electrical, magnetic, and magnetoresistance (MR) properties were investigated. It is found that Pd additions are uniformly distributed on the grain boundaries of the LCSMO grains, which decrease the resistivity and the saturation magnetic moment of the matrix. An interesting phenomenon is observed that at a given field, when the plating time increases, the MR increases at low addition level (0>t (plating time)<40 min) and decreases at high addition level (t>40 min), indicating an optimal plating time of 40 min, at which the MR value is maximum. Our analysis suggests that the improvement of grain boundaries originating from Pd addition plays an important role in enhancing the MR.  相似文献   

13.
Ferromagnetic La0.7Sr0.3MnO3 (LSMO) and antiferromagnetic La0.33Ca0.67MnO3 (LCMO) layers were grown on SrTiO3 (STO) substrates by the pulsed laser deposition technique. LSMO films had rougher surfaces and larger grain sizes than LCMO films. Fully strained bilayers, in which each layer was as thin as 10 nm, were prepared by changing their stacking sequences, i.e. LSMO/LCMO/STO and LCMO/LSMO/STO. The former had higher TC (350 K) than the latter (300 K), and exchange bias effects were only observed in the former bilayers. This revealed that microstructures could play an important role in the transport and magnetic properties of manganese oxide thin films.  相似文献   

14.
Two junctions of Co/Al2O3/NiFe (J1) and La0.7Ca0.3MnO3/Al2O3/La0.7Ca0.3MnO3 (J2) were prepared to compare their tunneling magnetoresistance (TMR) in consideration of interfacial state effects. The structural and transport properties of the layered samples were characterized by X-ray and magnetic measurements, showing indeed an interfacial state dependence. The influences such as from a CoO sublayer in J1 and from interfacial coherence in J2 were discussed. The largest TMR observed amounts to 16% (290 K) for J1 and 65% (40 K) for J2.  相似文献   

15.
通过机械合金化方法制备了单相La0.7Ca0.3MnO3化合物.球磨形成的非晶态结构在920K退火时转变为钙钛矿型相结构.根据质量作用定律,讨论了非晶晶化动力学行为,其晶化转变激活能约为265kJ/mol.同时研究了化合物的电阻特性,发现低温下样品的电阻ρ与温度T的关系为ρ∝T2,随退火温度的升高,ρ-T2曲线斜率下降.在远离居里温度处的低温磁电阻可用Δρ/ρ0=p1-p2T3/2-p3T描述. 关键词:  相似文献   

16.
The effect of Ce-doping on structural, magnetic, electrical and thermal transport properties in hole-doped manganites La0.7−xCexCa0.3MnO3 (0.0≤x≤0.7) is investigated. The structure of the compounds was found to be crystallized into orthorhombically distorted perovskite structure. dc Susceptibility versus temperature curves reveal various magnetic transitions. For x≤0.3, ferromagnetic regions (FM) were identified and the magnetic transition temperature (TC) was found to be decreasing systematically with increasing Ce concentration. The electrical resistivity ρ(T) separates the well-define metal-semiconducting transition (TMS) for low Ce doping concentrations (0.0≤x≤0.3) consistent with magnetic transitions. For the samples with 0.4≤x≤0.7, ρ(T) curves display a semiconducting behavior in both the high temperature paramagnetic (PM) phase and low temperature FM or antiferromagnetic phase. The electron–phonon and electron–electron scattering processes govern the low temperature metallic behavior, whereas small polaron hopping model is found to be operative in PM phases for all samples. These results were broadly corroborated by thermal transport measurements for metallic samples (x≤0.3) in entire temperature range we investigated. The complicated temperature dependence of Seebeck coefficient (S) is an indication of electron–magnon scattering in the low temperature magnetically ordered regime. Specific heat measurements depict a broadened hump in the vicinity of TC, indicating the existence of magnetic ordering and magnetic inhomogeneity in the samples. The observation of a significant difference between ρ(T) and S(T) activation energies and a positive slope in thermal conductivity κ(T) implying that the conduction of charge carriers were dominated by small polaron in PM state of these manganites.  相似文献   

17.
Bulk samples of gadolinium doped manganites with compositional formula La0.7−xGdxCa0.3MnO3 (x=0.0 and 0.1) were prepared by conventional solid state reaction method. After characterizing the samples by X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectrometer, a systematic investigation of electrical and magneto-transport properties has been investigated. The replacement of La ion by Gd results in a decrease of the metal-insulator transition temperature TMI and the magnetoresistance as well as the resistivity are found to increase. The electrical resistivity in the entire temperature range fit well with the phenomenological percolation model, which is based upon an approach that the system consists of the phase separated ferromagnetic metallic and paramagnetic insulating regions.  相似文献   

18.
采用固相烧结方法制备了Pr1-xCaxMnO3(x=0.3)钙态矿结构锰氧化物陶瓷样品,对其在磁场和电场下的直、交流输运性质做了系统研究.通过测量加磁场和零场下的Ⅰ-Ⅴ曲线,得到其居里温度为150K,与VSM测试结果一致.通过测量加磁场与零场下交流的阻抗频谱,发现加磁场后样品的晶界电阻明显减小,而晶粒电阻几乎保持不变,表明Pr1-xCaxMnO3陶瓷多晶样品的CMR效应源于样品的晶界.为确定晶界处的势垒高度,测量了样品在不同频率下的阻抗温谱,根据Arrhenius定律拟合得出势垒高度为117 meV,与用直流R-T数据拟合得出的激活能一致.  相似文献   

19.
Electron magnetic resonance (EMR) was studied on crystalline bulk and nanometer-sized samples of the same La0.7Ca0.3MnO3 manganite compound aiming to compare their magnetic homogeneities. The results obtained show that single-crystalline bulk sample is less homogeneous than the nanocrystalline one. Except for higher homogeneity, the nanometer-sized sample also demonstrates a weaker magnetic anisotropy. As a result, well-pronounced coexistence of different magnetic phases (coexistence of ferromagnetic and paramagnetic resonance signals) is observed in the bulk sample, while it is absent in the nanocrystalline one. It is suggested that such strong difference is directly connected to the difference in structural state of the samples.  相似文献   

20.
Magnetic and transport properties of (La0.7Pb0.3MnO3)1−xAgx composites are explored in this study. Ferromagnetism is gradually attenuated due to the magnetic dilution with increase of Ag content percentage. Clearly irreversible behavior in the zero-field cooling and field cooling curves at a low field caused by the competition between the magnetization and magnetic domain orientation processes has been observed as x increases. Saturation magnetization decreases as x increases, while ferromagnetic transition temperature remains around 346 K for all composites. The resistivity decreases significantly for (La0.7Pb0.3MnO3)1−xAgx composites. It is suggested that introduction of Ag into the niche of grain boundaries forms artificial conducting network and improves the carriers to transport. However, enhancement of magnetoresistance has been observed for the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号