首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The effect of Pr doping on structural properties and room temperature Raman spectroscopy measurements is investigated in manganites (Eu1−xPrx)0.6Sr0.4MnO3 (0≤x≤1.0) with fixed carrier concentration. The result of the Rietveld refinement of x-ray powder diffraction shows that these compounds crystallize in an orthorhombic distorted structure with a space group Pnma. It is evident that, with increasing Pr substitution, three types of orthorhombic structures can be distinguished. The phonon frequencies of the three main peaks, in room temperature Raman-scattering measurements, have been discussed together with their structural characteristics, such as bond-length, bond-angles, and the change of orthorhombic structure type. With the increase of Pr content, the mode at 491  cm−1 also shows a corresponding change. A step effect becomes evident, which seems to indicate the close dependence between the frequency shift of this mode and the change in crystal symmetry. This further supports the notion that the mode at 491  cm−1 is closely correlated with the Jahn–Teller distortion. Moreover, we have found that the lowest frequency peak (assigned as an A1g phonon mode) depends linearly on the tolerance factor t.  相似文献   

2.
We have used spectroscopic ellipsometry to determine the complex dielectric function of a series of ternary BexZn1−xTe thin films grown by molecular beam epitaxy. The II–VI semiconductor alloys were grown on InP substrates that had an InGaAs buffer layer. After the growth, X-ray diffraction experiments were performed in order to determine the alloy concentration. A standard inversion technique was used to obtain the dielectric functions from the measured ellipsometric spectra, obtained between 2000 nm (5000 cm−1) and 40,000 nm (250 cm−1). By modelling the dielectric function as a collection of oscillators, representing longitudinal and transverse optical phonons of the BexZn1−xTe lattice, we were able to recover the phonon spectra for this alloy system. It is argued that the additional phonon modes that are obtained from ellipsometry are best understood from the recently-proposed percolation model.  相似文献   

3.
Far-infrared reflectivity spectra of Pb1−xMnxTe (0.0001x0.1) single crystals were measured in the 10–250 cm−1 range at room temperature. The analysis of the far-infrared spectra was made by a fitting procedure based on the model of coupled oscillators. In spite of the strong plasmon–LO phonon interaction, we found that the long wavelength optical phonon modes of these mixed crystals showed an intermediate one–two mode behavior.  相似文献   

4.
Undoped zinc oxide thin films and nanostructured layers were grown by pulsed laser deposition on different substrates. They were characterized by scanning electron microscopy and Raman backscattering spectroscopy. Larger substrate mismatch leads to higher structural disorder in the thin films. Simultaneously, the intensity of the phonon mode at 580 cm−1 increases. However, for the nanostructured layers it remains constant. These observations are discussed in terms of the disorder activation of forbidden Raman modes.  相似文献   

5.
Focused ion beam implantation of gallium and dysprosium was used to locally insulate the near-surface two-dimensional electron gas of AlxGa1−xN/GaN heterostructures. The threshold dose for insulation was determined to be 2×1010 cm−1 for 90 keV Ga+ and 1×109 cm−1 for 200 keV Dy2+ at 4.2 K. This offers a tool not only for inter-device insulation but also for direct device fabrication. Making use of “open-T” like insulating line patterns, in-plane gate transistors have been fabricated by focused ion beam implantation. An exemplar with a geometrical channel width of 1.5 μm shows a conductance of 32 μS at 0 V gate voltage and a transconductance of around 4 μS, which is only slightly dependent on the gate voltage.  相似文献   

6.
The microwave spectrum of bullvalene has been investigated in the region 18–40 GHz. In addition to transitions in the ground vibrational state, transitions arising from five excited vibrational states below 600 cm−1 have also been observed. A combination of microwave intensity measurements and infrared and Raman data has been utilized to assign these vibrations. Three of the vibrations are E-type modes at 241, 355, and 588 cm−1. One is an A1-type mode at 445 cm−1, and another is an A2-type at 266 cm−1. The microwave spectrum indicates the presence of a first-order Coriolis interaction for the E modes at 241 and 588 cm−1. The first-order Coriolis coupling constant q = 0.557 MHz for the 241 cm−1 vibration. The spectral results are consistent with C3v symmetry for bullvalene.  相似文献   

7.
Here we present Raman spectra of YBa2(Cu1–x Zn x )3O7 and YBa2(Cu1–x Ni x )3O7 as a function of temperature and Zn or Ni content. The temperature dependence of two modes at 340 and 440 cm–1 is analyzed. Similarly to the infrared measurements it is found that Zn substantially suppresses the superconductivity induced phonon softening whereas, Ni does not affect much that effect. Moreover, the superconductivity induced phonon stiffening of the 440 cm–1 mode completely disappeared with the Zn doping. We find this behaviour might support the model where Zn acts effectively as a magnetic pair breaker.  相似文献   

8.
Straight nanometer-sized pore arrays are formed on an n-InP (1 0 0) surface by electrochemical anodization in HCl-based electrolytes. Raman scattering spectra are measured and compared to those of the bulk InP. Two new peaks around 299 and 304 cm−1 are observed for porous InP. The peak at 299 cm−1 is attributed to a TO phonon mode observable due to a breakdown of polarization selection rule in the case of nanometer-sized crystallites. The peak at 304 cm−1 is suggested to be a surface-related vibration mode. In addition, the Raman signals of the porous InP are intensified up to 20–25 times than that of the bulk InP. The reason for such strong enhancement is not clear and is under further investigation.  相似文献   

9.
LiFe1 − xMnxPO4 olivines are promising material for improved performance of Li‐ion batteries. Spin–phonon coupling of LiFe1 − xMnxPO4 (x = 0, 0.3, 0.5) olivines is studied through temperature‐dependent Raman spectroscopy. Among the observed phonon modes, the external mode at ~263 cm−1 is directly correlated with the motions of magnetic Fe2+/Mn2+ ions. This mode displays anomalous temperature‐dependent behavior near the Néel temperature, indicating a coupling of this mode with spin ordering. As Mn doping increases, the anomalous behavior becomes clearly weaker, indicating the spin–phonon coupling quickly decreases. Our analyses show that the quick decrease of spin–phonon coupling is due to decrease of the strength of spin–phonon coupling, but not change of spin‐ordering feature with Mn doping. Importantly, we suggest that the low electrochemical activity of LiMnPO4 is correlated with the weak spin–phonon coupling strength, but not with the weak ferromagnetic ground state. Our work would play an important role as a guide in improving the performances of future Li‐ion batteries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
R. Jimenez  A. Varez  J. Sanz   《Solid State Ionics》2008,179(13-14):495-502
The Rietveld analysis of ND patterns of polycrystalline Li0.2 − xNaxLa0.6TiO3 (0 ≤ x < 0.2) samples, recorded between 300 and 1075 K, shows an orthorhombic–tetragonal transformation, in which the octahedral tilting along the b axis is eliminated at ~ 773 K, but the vacancy ordering along the c axis remains. In Li rich samples, conductivity (10− 3 Ω− 1 cm− 1 at 300 K) departs from the Arrhenius behaviour, decreasing activation energies from 0.37 to 0.14 eV when octahedral tilting is eliminated. Successive Maxwell–Wagner blocking processes, detected in the real part of dielectric constant plots, have been ascribed to the Li blocking at interior domains, grain-boundary and electrode–electrolyte interfaces. The substitution of Li+ by Na+ decreases the amount of vacant A-sites, decreasing several orders of magnitude the conductivity when the amount of vacancies approaches the vacancy percolation threshold (np = 0.27). Below the percolation threshold, Li ions only display local mobility, remaining confined into small domains of perovskites.  相似文献   

11.
Recent interests in mixed metal oxide nanostructured materials especially IrxRu1−xO2 compounds have been mainly driven by the technological application as electrocatalyst and electrode materials. We present room temperature Raman scattering results of single crystalline IrxRu1−xO2 (0 ≤ x ≤ 1) nanowires grown by atmospheric pressure chemical vapor deposition. We observed that the Eg, the A1g, and the B2g phonon modes of a single IrxRu1−xO2 nanowire are blue-shifted linearly with respect to the Ir contents from which we could get stoichiometry information. We also observed that the asymmetric lineshape and the broadening of the full width at half maximum of the Eg mode that involves the out-of-plane oxygen vibration. The unusual asymmetric broadening of the Eg phonon can be explained by the activation of the non-zone-center phonons due to substitutional disorder present in the system. We also found that there is a mixed mode of the A1g and the B2g phonons due to the substitutional disorder, in the range of 630–750 cm−1.  相似文献   

12.
We have measured the Raman spectra of intermediate valent (IV) SmB6 and compared it to LaB6 and EuB6. Beside the three high energy Raman active phonons we found additional features in the spectra. Most prominent is a peak at 172 cm-1 for SmB6, at 214 cm-1 for LaB6 and at ~220 cm-1 for EuB6. The spectra are analysed in terms of defect induced phonon excitations yielding a weighted phonon density of states. The softening of the line in IV SmB6 compared to the other hexaborides is unusual since even in the trivalent MB6 compounds the Raman active phonon modes normally are at lower frequencies than in semiconducting, divalent samples. This phonon softening is explained in analogy with the phonon anomalies in other IV compounds like Sm1?xYxS and TmSe.  相似文献   

13.
Two GaN MOVPE growth methods to reduce the threading dislocation (TD) density have been explored. The combined effects of (1) in situ SiNx masking of the sapphire substrate and (2) starting the epitaxial growth at low V-to-III ratio on the GaN film quality were studied by atomic force microscopy, transmission electron microscopy and high-resolution X-ray diffraction. It was found that the annealing condition of the low-temperature nucleation layer after in situ SiNx masking is critical in order to decrease the density of nucleation sites and hence increase the average grain size to about 5 μm. However, the coalescence of large grains with vertical side facets results in the formation of dense bundles of TDs at the grain boundaries combined with large numbers of basal-plane dislocation loops throughout the film. The formation of these dislocations can be prevented by starting the epilayer growth at low V-to-III ratio, resulting in the formation of grains with inclined side facets. The interaction of the TDs with the inclined side facets causes the dislocations to bend 90 as the grains grow in size and coalesce. GaN films with dislocation densities as low as 1×108 cm−2, giving full-width at half-maximum values of 180 and 220 arcsec for respectively (002) and (302) omega scans, were achieved by the combination of in situ masking and low V–III ratio epilayer growth. Hall carrier mobility values in excess of 900 cm2 V −1 s−1 were deduced for Si-doped layers.  相似文献   

14.
Transparent p-type thin films, containing zinc oxide phases, have been fabricated from the oxidation of n-type zinc nitride films. The zinc nitride thin films were deposited by rf-magnetron sputtering from a zinc nitride target in pure N2 and pure Ar plasma. Films deposited in Ar plasma were conductive (resistivity 4.7×10−2 Ω cm and carrier concentrations around 1020 cm−3) Zn-rich ZnxNy films of low transmittance, whereas ZnxNy films deposited in N2 plasma showed high transmittance (>80%), but five orders of magnitude lower conductivity. Thermal oxidation up to 550 C converted all films into p-type materials, exhibiting high resistivity, 102–103 Ω cm, and carrier concentration around 1013 cm−3. However, upon oxidation, the ZnxNy films did not show the zinc oxide phase, whereas Zn-rich ZnxNy films were converted into films containing ZnO and ZnO2 phases. All films exhibited transmittance >85% with a characteristic excitonic dip in the transmittance curve at 365 nm. Low temperature photoluminescence revealed the existence of exciton emissions at 3.36 and 3.305 eV for the p-type zinc oxide film.  相似文献   

15.
Solid solutions of (CsHSO4)1 − x(CsH2PO4)x (x = 0.25-0.75) were synthesized by mechanical milling method over a wide range of compositions. Superprotonic cubic phase was confirmed for all these samples between 293 and 420 K depending on its composition. These superprotonic phases have primitive cubic structure similar to that of CsH2PO4. The kinetic stability of the supercooled cubic phase depends both on the composition x and the humidity of surrounding atmosphere. The most stable composition of the cubic phase was found around x = 0.67 and could be maintained for several days even under ambient atmosphere. The ionic conductivities of these superprotonic phases reached 10− 2–10− 3 S∙cm− 1 at 450 K. With increasing x the ionic conductivity at the superprotonic phase decreased continuously associated with the increase of the activation energy. These findings suggest that the average number of the hydrogen bonds between XO4 (X = S, P) units plays an important role on the stability of the cubic phase and also on the conductivity.  相似文献   

16.
Bi85Sb15−xPrx (x=0,1,2,3) alloys with partial substitution of Pr for Sb were synthesized by mechanical alloying followed by high-pressure sintering. The crystal structure was characterized by X-ray diffraction. The electrical conductivity and Seebeck coefficient were measured in the temperature range of 80–300 K. The results show that the electrical conductivity and Seebeck coefficient of Pr-substituted samples are both larger than those of the reference sample, Bi85Sb15, in the whole measurement temperature range. The power factor of Bi85Sb13Pr2 reaches a maximum value of 3.83×10−3 W K−2 m−1 at 235 K, which is about four times larger than that of the reference sample, Bi85Sb15, at the same temperature.  相似文献   

17.
C.F. Wang  K.M. Kuo  C.Y. Lin  G. Chern   《Solid State Communications》2009,149(37-38):1523-1526
FexPd1−x (x=.30, .44, .55, .67, and .78) films were directly grown on SrTiO3(001) and MgO(001) by molecular beam epitaxy at 500 C. The thickness of all films is 50 nm. X-ray diffraction shows epitaxial quality and face-center- tetragonal (00l), (002), and (003) peaks indicating an FePd L10 order state for films of x=.30, .44 and .55. X-ray diffraction only shows (002) peaks with a relatively weak intensity for the film of x=.67 and no (00l) peak is observed, but a broad body-center-cubic Fe(002) is identified for the film of x=.78. Magnetic hysteresis curves are carried out by a vibrating sample magnetometer (VSM) with an applied field within 12 kOe. Magnetization of both in-plane and perpendicular-to- the-plane measurements show a linear increase of the magnetization saturation from 560 emu/cm3 to 1250 emu/cm3 as x increasing from .30 to .78. For the results of the in-plane measurements, remanence (Mr), however, shows a minimum while the anisotropy field (Hk) shows a maximum for the film with x=.44 indicating the optimal content ratio of Fe/Pd for perpendicular anisotropy in the present alloy films. Further, negative remanence is observed in the hysteresis curves where the field is perpendicular to the film of x=.78 This may indicate that the L10order state still affects the magnetic anisotropy for high Fe content films even though the film has a body-center-cubic structure.  相似文献   

18.
Far infrared reflection spectra of ZnxHg1−xSe with x = 0 to 0.4 showed characteristic of two TO-phonon modes behavior and the plasmon-LO phonon coupling in the region from 20 to 500 cm−1 at 5 and 300 K. The composition dependence of TO modes on the frequency is linear for the HgSe-like mode TO1 and constant for the ZnSe-like mode TO2. The additional TO mode due to clustering effect is observed at 113 cm−1. The plasmon-LO phonon coupled modes are explained well by our model taken into account the two-mode behavior and the contribution of interband transitions in dynamic dielectric function.  相似文献   

19.
Raman scattering studies were performed in GaN nanoribbons grown along [1 0 0]. These samples were prepared inside Na‐4 mica nanochannels by the ion‐exchange technique and subsequent annealing in NH3 ambient. Detailed morphological and structural studies including the crystalline orientation were performed by analyzing the vibrational properties in these GaN nanoribbons. Pressure in the embedded structure was calculated from the blue shift of the E2(high) phonon mode of GaN. Possible red shift of optical phonon modes due to the quantum confinement is also discussed. In addition to the optical phonons allowed by symmetry, two additional Raman peaks were also observed at ∼633 and 678 cm−1 for these nanoribbons. Calculations for the wavenumbers of the surface optical (SO) phonon modes in GaN in Na‐4 mica yielded values close to those of the new Raman modes. The SO phonon modes were calculated in the slab (applicable to belt‐like nanoribbon) mode, as the wavenumber and intensity of these modes depend on the size and the shape of the nanostructures. The effect of surface‐modulation‐assisted electron–SO phonon scattering is suggested to be responsible for the pronounced appearance of SO phonon modes. A scaling factor is also estimated for the interacting surface potential influencing the observed SO Raman scattering intensities. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This paper reports on the use of phonon spectra obtained with laser Raman spectroscopy for the uncertainty concerned to the optical phonon modes in pure and composite ZnO1?x (Cr2O3) x . Particularly, in previous literature, the two modes at 514 and 640 cm?1 have been assigned to ZnO are not found for pure ZnO in our present study. The systems investigated for the typical behavior of phonon modes with 442 nm as excitation wavelength are the representative semiconductor (ZnO)1?x (Cr2O3) x (x = 0, 5, 10 and 15 %). Room temperature Raman spectroscopy has been demonstrated polycrystalline wurtzite structure of ZnO with no structural transition from wurtzite to cubic with Cr2O3. The incorporation of Cr3+ at most likely on the Zn sub-lattice sites is confirmed. The uncertainty of complex phonon bands is explained by disorder-activated Raman scattering due to the relaxation of Raman selection rules produced by the breakdown of translational symmetry of the crystal lattice and dopant material. The energy of the E 2 (high) peak located at energy 53.90 meV (435 cm?1) due to phonon–phonon anharmonic interaction increases to 54.55 meV (441 cm?1). A clear picture of the dopant-induced phonon modes along with the B 1 silent mode of ZnO is presented and has been explained explicitly. Moreover, anharmonic line width and effect of dislocation density on these phonon modes have also been illustrated for the system. The study will have a significant impact on the application where thermal conductivity and electrical properties of the materials are more pronounced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号