首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the complex variable function method and the conformal mapping technique,the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load on the partial crack surface.Analytic solutions of the field intensity factors and the mechanical strain energy release rate are derived under the assumption that the surfaces of the crack are electrically impermeable.The results can be reduced to the well-known solutio...  相似文献   

2.
In this paper the dynamic anti-plane problem for a functionally graded magneto-electro-elastic plate containing an internal or an edge crack parallel to the graded direction is investigated. The crack is assumed to be magneto-electrically impermeable. Integral transforms and dislocation density functions are employed to reduce the problem to Cauchy singular integral equations. Field intensity factors and energy release rate are derived, analyzed and partially calculated numerically. The effects of material graded index, loading combination parameter (including size and direction) and geometry criterion of the plate on the dynamic energy release rate are shown graphically. Numerical results indicate that increasing the graded index can all retard the crack extension, and that both the applied magnetic field loadings and electric field loadings play a dominant role in the dynamic fracture behaviors of crack tips.  相似文献   

3.
The present paper investigates the problem of a conducting arc crack between a circular piezoelectric inclusion and an unbounded piezoelectric matrix. The original boundary value problem is reduced to a standard Riemann–Hilbert problem of vector form by means of analytical continuation. Explicit solutions for the stress singularities δ=−(1/2)±iε are obtained, closed form solutions for the field potentials are then derived through adopting a decoupling procedure. In addition, explicit expressions for the field component distributions in the whole field and along the circular interface are also obtained. Different from the interface insulating crack, stresses, strains, electric displacements and electric fields at the crack tips all exhibit oscillatory singularities. We also define a complex electro-elastic field concentration vector to characterize the singular fields near the crack tips and derive a simple expression for the energy release rate, which is always positive, in terms of the field concentration vector. The condition for the disappearance of the index ε is also discussed. When the index ε is zero, we obtain conventionally defined electro-elastic intensity factors. The examples demonstrate the physical behavior and the correctness of the obtained solution.  相似文献   

4.
In this paper the anti-plane problem for an interface crack between two dissimilar magneto-electro-elastic plates subjected to anti-plane mechanical and in-plane magneto-electrical loads is investigated. The interface crack is assumed to be either magneto-electrically impermeable or permeable, and the position of the interface crack is arbitrary. The finite Fourier transform method is employed to reduce the mixed boundary-value problem to triple trigonometric series equations. The dislocation density functions and proper replacement of the variables are introduced to reduce these series equations to a standard Cauchy singular integral equation of the first kind. The resulting integral equation together with the corresponding single-valued condition is approximated as a system of linear algebra equations which can be easily solved. Field intensity factors and energy release rates are determined numerically and discussed in detail. Numerical results show the effects of crack configuration and loading combination parameters on the fracture behaviors of crack tips according to energy release rate criterion. The study of this problem is expected to have applications to the investigation of dynamic fracture properties of magneto-electro-elastic materials with cracks.  相似文献   

5.
The effect of couple stresses at a crack tip is investigated by considering two particular problems. A formally exact solution is obtained (for couple-stress and micropolar elasticity) for the case of a semi-infinite crack with a prescribed internal stress. Secondly, the problem of a finite crack in an infinite medium (with couple stresses) under uniform tension at infinity, is solved by matched expansions when the couple stress parameter is small compared with the crack length. In each case it is shown that the energy release rate from a crack tip tends to the classical elastic value as the couple stress (or micropolar) parameter tends to zero.  相似文献   

6.
The energy release rate and associated energy flux integral in dynamic fracture of magneto-electro-thermo-elastic solids are formulated with the inclusion of multi-field fully coupled effects based on fundamental principles of thermodynamics. The difference between the global and local dynamic contour integrals is caused by unsteady state, mechanical body force, electricity conduction and thermal effect as the closed contour including crack faces is chosen. This formulation successfully captures the crack-tip singularity of coupled fields, offers the right expression for the crack driving force, and resolves the controversial issue on magneto-electro-thermo-elastic fracture criterion. Especially, for steady-state crack propagation in a magneto-electro-elastic solid, the path-independent dynamic contour integral is determined from the asymptotic near-tip field solution based on the Stroh-type formalism and the resulting dynamic energy release rate has an odd dependence on the dynamic magnetic induction intensity factor and the dynamic electric displacement intensity factor.  相似文献   

7.
8.
The anti-plane problem of multiple cracks originating from a circular hole in a magnetoelectroelastic solid is investigated under remotely uniform anti-plane mechanical loading and in-plane electromagnetic loadings. The boundary value problem is reduced to a Cauchy integral equation by a new mapping function and the complex variable method, which is further solved exactly. The analytic expressions of the complex potentials, the field intensity factors and the energy release rate are derived in closed-form under the assumption that the surfaces of the cracks and hole are both electrically and magnetically impermeable. The effects of crack configurations and combined loadings on the energy release rate are shown graphically. Several useful results which may have potential applications to the design and fracture analysis of magnetoelectroelastic structures are given.  相似文献   

9.
This paper investigates the thermal elastic fields in the hollow circular overlay fully bonded to a rigid substrate, which is subjected to a temperature change. Following our previous work for a solid circular overlay/substrate system (Yuan and Yin, Mech. Res. Commun. 38, 283–287, 2011), this paper presents a closed form approximate solution to the axisymmetric boundary value problem using the plane assumption, whose accuracy is verified by the finite element models. When the inner radius is reduced to zero, the present solution recovers the previous solution. When the outer radius approaches infinite, the solution provides the elastic fields for a tiny hole in the overlay. The effects of thickness and width of the overlay are investigated and discussed. When a circular crack initiates in a solid circular overlay, the fracture energy release rate is investigated. This solution is useful for thermal stress analysis of hollow circular thin film/substrate systems and for fracture analysis of spiral cracking in the similar structures.  相似文献   

10.
解析研究了面内电载荷和反平面机械载荷作用下压电体中纳米尺度圆孔边均布电可通多裂纹问题的断裂性能。基于Gurtin-Murdoch表面弹性理论,利用保角映射方法和复变弹性理论给出了裂纹尖端电弹场分布、电弹场强度因子及能量释放率的解析结果。阐述了无量纲电弹场强度因子、无量纲能量释放率的尺寸依赖效应,讨论了裂纹数量和缺陷几何参数对无量纲场强度因子和无量纲能量释放率的影响。结果表明:无量纲电弹场强度因子和无量纲能量释放率具有显著的尺寸依赖效应;考虑表面效应,孔径和裂纹长度相当时,电弹场强度因子达到最大;裂纹/孔径比对电弹场强度因子随裂纹数量变化的制约会随着裂纹数量的增加而逐渐消失;过大或过小的裂纹孔径比会削弱裂纹长度对能量释放率的影响。  相似文献   

11.
解析研究了面内电载荷和反平面机械载荷作用下压电体中纳米尺度圆孔边均布电可通多裂纹问题的断裂性能。基于Gurtin-Murdoch表面弹性理论,利用保角映射方法和复变弹性理论给出了裂纹尖端电弹场分布、电弹场强度因子及能量释放率的解析结果。阐述了无量纲电弹场强度因子、无量纲能量释放率的尺寸依赖效应,讨论了裂纹数量和缺陷几何参数对无量纲场强度因子和无量纲能量释放率的影响。结果表明:无量纲电弹场强度因子和无量纲能量释放率具有显著的尺寸依赖效应;考虑表面效应,孔径和裂纹长度相当时,电弹场强度因子达到最大;裂纹/孔径比对电弹场强度因子随裂纹数量变化的制约会随着裂纹数量的增加而逐渐消失;过大或过小的裂纹孔径比会削弱裂纹长度对能量释放率的影响。  相似文献   

12.
Linear-fractional strain rate and stress relations are used to simulate materials undergoing steady state creep. The crack tip asymptotic character of the stress and strain rate field is obtained in exact and approximate form. In the limit as the radial distance emanating from the crack tip approaches zero, the stress field corresponds to that for an ideal plastic material while the exact and approximate solutions tend to coincide. Discussed is the nonhomogeneous singular character of the strain rate field that possess different orders of singularities in a circular region around the crack tip.  相似文献   

13.
Solution of Cauchy-type singular integral equations permits the evaluation of the fracture parameters at the crack tips very accurately. However, it does not permit the determination of the crack opening and sliding displacements while ensuring no crack surface interpenetration unless the location of the contact zone is known a priori. In order to circumvent this shortcoming, this study presents a solution method based on the Hadamard-type singular integral equations to obtain the crack opening and sliding displacements directly while enforcing the appropriate conditions to prevent interpenetration. Furthermore, the crack opening displacements are physically more meaningful and readily validated against the finite element analysis predictions. The numerical solutions of the hypersingular integral equations provide not only crack opening and sliding displacements directly but also the stress intensity factors and energy release rates. Also, the behavior of the energy release rate is examined as the cohesive crack located parallel to the interface approaches the interface from either the soft or the stiff side of the interface. The limiting value of the energy release rate is established by considering an interface crack. As the cohesive crack approaches the interface from either side of the interface, the energy release rate approaches to that of the interface crack. However, the length of contact zone between the cohesive crack surfaces under uniform shear loading does not approach to that of the interface crack.  相似文献   

14.
The transient response of a Mode-III crack propagating in a magneto-electro-elastic solid subjected to mixed loads is investigated through solving the corresponding boundary-initial-value problem in both the cracked solid region and the interior fluid region with treatment of electro-magnetically permeable and impermeable crack face conditions in a unified way. The closed-form results for the dynamic field intensity factors are used to evaluate the dynamic energy release rate through the crack-tip dynamic contour integral. The permeability of the interior fluid region relative to the cracked solid region significantly affects the magneto-electro-mechanical coupling coefficient in the Bleustein–Gulyaev wave function and, consequently, the horizontal shear surface wave speed, the dynamic field intensity factors and the dynamic energy release rate. It is revealed from dynamic fracture mechanics analysis that the dynamic energy release rate thus obtained has an odd dependence on the dynamic electric displacement intensity factor and the dynamic magnetic induction intensity factor. It is also found that the horizontal shear surface wave speed provides the limiting velocity for the propagation of a Mode-III crack in a magneto-electro-elastic solid when there is only applied traction loading.  相似文献   

15.
Consider two bonded functionally graded piezoelectric material (FGPM) with finite height. Each material contains an arbitrary oriented crack. The material properties are assumed in exponential forms in the direction normal to the interface. The crack surface condition is assumed to be electrically impermeable or permeable. Using the Fourier transform technique, the problem can be reduced to a system of singular integral equations, which are then solved numerically by applying the Gauss-Chebyshev integration formula to obtain the stress intensity factors at the crack tips. Numerical calculations are carried out to obtain the energy density factor S and the energy release rate G. In impermeable case, the energy release rate has been shown to be negative as the electric loads are applied. The positive definite characteristic of the energy density factor makes it possible for predicting the fracture behavior of the cracked structure. The influences of the non-homogeneous parameters and crack orientation on the energy density factors at the crack tips are discussed in detail. The results show that the energy density factor at the crack tip will be increased when the crack tip is located within the softer material.  相似文献   

16.
The finite element analysis of crack problems often incorporates the asymptotic character of the local solution into the formulation. Embedment of stress or strain singularities can impose serious restrictions on the outcome and inconsistencies in predicting crack and/or growth. These restrictions are discussed in connection with the problem of two diametrically opposite corner cracks near a circular hole subjected to remote uniform tension. Enforced in the numerical treatment is the 1/r character of the strain energy density function local to the corner crack border where r is the radial distance measured from the crack front. The tendency for the corner crack to become a through crack is predicted by assuming that each point of the crack border extends by an amount proportional to the strain energy density factor. The path would correspond to the loci of minimum strain energy density function. Numerical results are displayed graphically and discussed in connection with crack initiation and non-self-similar crack growth.  相似文献   

17.
The finite element modeling and fracture mechanics concept were used to study the interfacial fracture of a FRP-concrete hybrid structure. The strain energy release rate of the interfacial crack was calculated by the virtual crack extension method. It is shown that the crack growth has three phases, namely, cracking initiation, stable crack growth and unstable crack propagation. The effects of geometric and physical parameters of the hybrid beam on the energy release rate were considered. These parameters include Young’s moduli of the FRP, the concrete and the adhesive, thickness of the FRP plate and adhesive, and the distance of FRP plate end from the beam end. The numerical results show that the energy release rate of the interfacial crack is influenced considerably by these parameters. The present investigation can contribute to the mechanism understanding and engineering design of the hybrid structures.  相似文献   

18.
The dynamic behavior of a limited-permeable rectangular crack in a transversely isotropic piezoelectric material is impinged by to a P-wave. The generalized Almansi theorem and the Schmidt method are used to determine the stress intensity factor and energy density factor as the primary fracture criterion of failure. The mixed boundary value problem entails the evaluation of the appropriate crack edge stress singularities that are characteristics of the fundamental functions. The stress and electric displacement intensity factors are also used to find the energy release rate that can be computed numerically and compared with the results corresponding to those of the stress intensity factor, and energy density factor. Graphical presentation shows that the energy release rate is always negative for the boundary conditions considered while the energy density factors always remain positive. Under certain conditions, the stress and electric displacement intensity factors can be negative and subject to physical limitations. Piezoelectric material boundary value problem solutions should therefore be qualified by the application of failure criteria by fracture of otherwise, particularly when the mechanical and electrical energy can release by creating free surface at the macroscopic and microscopic scales. Negative energy release rate found for the piezoelectric medium in this work can be a case in point.Positive definiteness of the energy density factor can be applied to mutliscale fracture. This is not true for the stress intensity factor nor the energy release rate. Hence, crack initiation behavior for the permittivity of a rectangular crack due to the wave propagation effects may be studied. In particular, the initiation of micro-cracks may be identified with certain critical stress wave frequency band. Negative stress intensity factor may not enhance macrocracking but it does not exclude microcrack initiation.  相似文献   

19.
利用焦散线实验系统,进行了冲击加载下含预制裂纹梁柱试件的断裂实验,研究了梁柱试件的梁柱节点、梁上和柱端裂纹的扩展轨迹、扩展速度和应力强度因子的变化规律。实验结果表明:受冲击后,试件首先在梁柱节点处开裂,并在裂纹扩展过程中发生明显的曲裂运动,证明梁柱节点处最容易受到破坏。预制裂纹条数越多,梁柱节点处开裂越晚,说明裂纹条数少,能量可以在裂纹尖端积聚得更集中、更快。含柱端预制裂纹的试件,2条裂纹的开裂相隔时间要长于含梁上预制裂纹的试件;同时,试件的第2条裂纹优先在梁上裂纹处开裂,说明固端支座比简支梁断裂需要更多的能量。随着预制裂纹的增多,梁上裂纹在扩展过程中的曲裂现象减弱, 由于部分能量在柱端裂纹处积聚,用于推动梁上裂纹扩展的能量相应地减少。并且由于柱端裂纹的存在,梁上裂纹受到的拉应力分量减小,导致裂纹尖端受到弯矩变小,影响了裂纹的曲裂运动。  相似文献   

20.
A square-cell lattice is considered consisting of point masses at its knots connected by linearly elastic bonds of nonzero density. Steady-state crack propagation is studied. A general relation between the knot mass and the bond mass is assumed; however, a detailed analytical examination is made for the material-bond lattice with no concentrated masses. It is assumed that the crack divides the bond in half, and the broken bonds remain in the lattice structure. In this model, the fracture energy of the bond is ignored, and hence the local fracture energy of the lattice is zero. The classical formulation in terms of critical stresses is accepted. The macrolevel energy release does exist. The macrolevel energy release rate as a function of the crack speed is found and compared with that for the massless-bond lattice of the same averaged density. While in the main, the dependencies for these two models are similar, there are some essential differences. For the lattice with no concentrated masses this function appears discontinuous. There exists a region where the crack speed is insensitive to the variation of the macrolevel energy release rate. The admissible regions of the crack speeds for the considered two lattice models differ greatly. For the massless-bond lattice this region is rather wide, while for the other it is very narrow. Mathematically, it is of interest that some details of the factorization depend on whether the ratio of the crack speed to the wave speed is rational and, if so, whether it can be represented as a ratio of two odd numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号