首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fragmentation of different generations of poly(amidoamine) dendrimers was explored in five common MALDI matrices: 2,5-dihydroxybenzoic acid (DHB), 4-hydroxy-3-methoxycinnamic acid (FER), α-cyano-4-hydroxycinnamic acid (ACH), 2,4,6-trihydroxyacetophenone (THAP), and 3-hydroxypicolinic acid (HPA). Of these, DHB was the softest matrix and ACH produced significant fragment intensity already at MALDI threshold, FER and THAP being in between. HPA was not a convenient matrix for dendrimers and produced a specific fragmentation pattern. Fragmentation analysis was mainly concentrated on generation G1, which contains already all essential structural elements. Dendrimers showed complicated fragmentation behavior with multiple fragmentation channels in our MALDI experiments. The relative intensities of these channels depended selectively on choice of the matrix and showed dissimilar dependence on the laser pulse energy. This was attributed to different fragmentation mechanisms, due to different protonation pathways, occurring in the same MALDI plume. The fragmentation pathways were proposed for all observed fragmentation channels. All fragmentation sites of protonated ions were found to be directly attached to the protonation sites and the fragmentation was surplus charge driven in this sense. No charge remote fragmentation channels were detected. Cationized dendrimers showed higher stability than the protonated ions.  相似文献   

2.
The fragmentation patterns of closely related chalcones, cinnamoylchromans and cinnamoylchromenes, are reported to be strikingly different. The mass spectra of the first group show peaks typical of the fragmentation of simple chalcones balanced by additional fragmentation routes competing effectively with the typical chalcone fragmentation. For the other group with the introduced double bond the fragmentation is considerably changed. Initial loss of a methyl group gives rise to formation of the base peak in three of four examples. The [M – CH3]+ ion decomposes further, eliminating a styrene yielding the m/z 187 ion. This process may be rationalized as a retro-Diels–Alder fragmentation of a flavanone formed on intramolecular rearrangement of the molecular ion.  相似文献   

3.
The fragmentation of free tenfold protonated ubiquitin in intense 70 femtosecond pulses of 90 eV photons from the FLASH facility was investigated. Mass spectrometric investigation of the fragment cations produced after removal of many electrons revealed fragmentation predominantly into immonium ions and related ions, with yields increasing linearly with intensity. Ionization clearly triggers a localized molecular response that occurs before the excitation energy equilibrates. Consistent with this interpretation, the effect is almost unaffected by the charge state, as fragmentation of sixfold deprotonated ubiquitin leads to a very similar fragmentation pattern. Ubiquitin responds to EUV multiphoton ionization as an ensemble of small peptides.  相似文献   

4.
The fragmentation mechanism of D-glucose was investigated in detail by two different fragmentation techniques, namely, collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD) using all six 13C-labeled isotopomers and 2H-labeled isotopomers. For both CID and IRMPD energy-resolved measurements were carried out. Individual fragmentation pathways were studied at MS2 and MS3 levels. Additionally, we have developed an HPLC-tandem MS method to separate the anomers of D-glucose using a HILIC column and investigated their fragmentation patterns individually. We propose a complete fragmentation landscape of D-glucose, demonstrating that a rather simple multifunctional molecule displays extreme complexity in gas phase dissociation, following multiple parallel fragmentation routes yielding a total of 23 distinct fragment ions. The results allowed a detailed formulation of the complex fragmentation mechanism of D-glucose. The results have immediate consequences for the full structure analysis of complex carbohydrates.  相似文献   

5.
Nitrogen, argon, and krypton are used as curtain gases in an electrospray ionization mass spectrometer in an attempt to study the effect of these gases on the extent of ion fragmentation between the orifice and the skimmer of the interface region. A previously published collision model predicts that the degree of ion fragmentation increases with increasing mass of the curtain gas. However, the fragmentation yields are found to be the opposite to that expected. It is believed that the reversed trend with argon and krypton is caused by condensation of the gases within the free jet expansion between the orifice and the skimmer. A condensation parameter can be used to predict the degree of clustering of gases within a free jet expansion. When the condensation parameter is minimized, the predicted trend of fragmentation with mass is observed.  相似文献   

6.
Ultraviolet photodissociation (UVPD) was evaluated as a technique for generating ion fragmentation information that is alternative and/or complementary to the information obtained by collision‐induced dissociation (CID). Ions trapped in a pressurized linear ion trap were dissociated using a 355 nm or a 266 nm pulsed laser. Comparisons of UVPD and CID spectra using a set of aromatic chromophore‐containing compounds (desmethyl bosentan, haloperidol, nelfinavir) demonstrated distinct characteristic fragmentation patterns resulting from photodissociation. The wavelength of light and the pressure of the buffer gas in the UVPD cell are important parameters that control fragmentation pathways. The wavelength effect is related to the absorption cross section, location of the chromophore and the energy carried by one photon. Thus, UV irradiation wavelength affects fragmentation pathways as well as the fragmentation rate. The pressure effect can be explained by collisional quenching of ‘slow’ fragmentation pathways. We observed that higher pressure of the buffer gas during UVPD experiments highlights unique fragment ions by suppressing slow fragmentation pathways responsible for CID‐like fragmentation patterns. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The molecular species 1,1- and 1,2-disubstituted alkenes have been used as model systems for a comparative discussion of the results obtained with quantitative orbital analyses using different fragmentation modes. It is shown that when indices of the overall energy effects are used, the results of a quantitative orbital analysis are independent of the chosen fragmentation mode. On the other hand, the results of such analysis can depend on the fragmentation mode when indices of partial energy effects are used.  相似文献   

8.
Xanthene dyes such as rhodamine B undergo an interesting mass-spectrometric fragmentation reaction that eliminates small neutral alkanes such as propane. This fragmentation reaction has been investigated in a Fourier transform ion cyclotron mass spectrometer by means of laser photodissociation with visible light as well as by collision-induced dissociation. Different isotopically labeled decarboxyrhodamine B compounds were used to investigate the fragmentation mechanism. The results support a concerted mechanism for the formation of the alkanes instead of a two-step radical mechanism.  相似文献   

9.
The NBS-mediated oxidative fragmentation of benzilidene acetals has been investigated with mechanistic probes 12, 14, and 18 designed to discriminate between the possible competitive pathways. Results indicate that fragmentation of the initial benzylic radical 19 does not occur spontaneously but that oxidation proceeds rapidly to give the benzyl bromide 20, which then fragments via a polar pathway. Reversed regiospecificity in the fragmentation is demonstrated for the first time through the incorporation of an allylic alcohol into the benzilidene acetal.  相似文献   

10.
Recent advancements in mass spectrometry including data-dependent scanning and high-resolution mass spectrometry have aided metabolite profiling for non-radiolabeled xenobiotics. However, narrowing down a site of metabolism is often limited by the quality of the collision-induced dissociation (CID)-based precursor ion fragmentation. An alternative dissociation technique, higher energy collisional dissociation (HCD), enriches compound fragmentation and yields 'triple-quadrupole-like fragmentation'. Applying HCD along with CID and data-dependent scanning could enhance structural elucidation for small molecules. Liquid chromatography/multi-stage mass spectrometry (LC/MS(n) ) experiments with CID and HCD fragmentation were carried out for commercially available compounds on a hybrid linear ion trap orbital trap mass spectrometer equipped with accurate mass measurement capability. The developed method included stepped normalized collision energy (SNCE) parameters to enhance MS fragmentation without tuning for individual compounds. All the evaluated compounds demonstrated improved fragmentation under HCD as compared with CID. The results suggest that an LC/MS(n) method that incorporated both SNCE HCD- and CID-enabled precursor ion fragmentation afforded comprehensive structural information for the compounds under investigation. A dual collision cell approach was remarkably better than one with only CID MS(n) in an orbital trap. It is evident that such an acquisition method can augment the identification of unknown metabolites in drug discovery by improving fragmentation efficiency of both the parent compound and its putative metabolite(s).  相似文献   

11.
The influence of charge distribution on the cleavage of the peptides was investigated by fragmentation efficiency curves and quantum chemical calculations in order to clarify the fragmentation mechanism in this paper. The peptide Arg-Gly-Asp-Cys (RGDC) was oxidized to change the charge distribution, but its main sequence was retained. Under this study, it was illustrated that the fragmentation of the peptide RGDC became easier with each addition of an O atom to the Cys hydrosulfide group and the relative charge ratios between O and N (QO/QN) in the amide bonds had much to do with the cleavage of the peptide RGDC. For each amide bond, the situations coincided with overall conclusion: the increase of the QO/QN values results in a higher fragmentation efficiency and vice versa. The methods which combined fragmentation efficiency curves with the charge distribution of peptides provided a way to refine the mobile proton model for peptide fragmentation and to probe the discrepant fragmentation of peptides in peptide/protein identification.  相似文献   

12.
The efficiency of in-trap fragmentation in a low-pressure linear ion trap (LIT), using dipolar excitation, is dependent upon the choice of both the excitation q and the drive frequency of the quadrupole. In the work presented here, fragmentation efficiencies have been measured as a function of excitation q for drive frequencies of 816 kHz and 1.228 MHz. The experiments were carried out by fragmenting reserpine (609.23-->448.20 Th and 397.21-->365.19 Th transitions) and caffeine (195-->138 Th and 138-->110 Th transitions). The data showed that the onset of efficient fragmentation occurred at a lower Mathieu q for the LIT operated at 1.228 MHz when compared with the LIT operated at 816 kHz. A comparison of the fragmentation efficiency curves as a function of pseudo-potential well depth showed that the onset of fragmentation is independent of the drive frequency. In addition, a comparison of the fragmentation efficiency curves showed that all four of the precursor ions fragmented within a range of four V of pseudo-potential well depth. The choice of an appropriate excitation q can then be determined based upon a minimum pseudo-potential well depth, quadrupole field radius, drive frequency, and the mass of interest. Fragmentation efficiencies were also found to be significantly greater when using the higher drive frequency.  相似文献   

13.
The thermal fragmentation processes in poly-Schiff bases have been investigated by direct pyrolysis–mass spectrometry. The mass spectral data show that the thermal fragmentation occurring in the polymers under investigation is characterized by hydrogen transfer reactions. In the case of a totally aromatic poly-Schiff base (polymer I ), the thermal fragmentation process involves hydrogen transfer irom the methyne group with formation of fragments bearing nitrile and/or phenyl end groups. In the case of aromatic-aliphatic poly-Schiff bases (polymers II–IV ), the hydrogen transfer process occurs from the aliphatic methylene groups. The latter process involves a lower energy and therefore occurs at lower temperatures with respect to the totally aromatic polymer I , with formation of thermal fragments bearing olefin and/or imine end groups. Beside these fragments, several thermal fragmentation compounds are also evolved by multiple hydrogen transfer reactions.  相似文献   

14.
Undesired fragmentation of electrospray generated ions in an rf multipole traps can be problematic in many applications. Of special interest here is ion dissociation in a 2-D quadrupole ion trap external to a Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) used in proteomic studies. In this work, we identified the experimental parameters that determine the efficiency of ion fragmentation. We have found that under the pressure conditions used in this study there is a specific combination of the radial and axial potential well depths that determines the fragmentation threshold. This combination of rf and dc fields appears to be universal for ions of different mass-to-charge ratios, molecular weights, and charge states. Such universality allows the fragmentation efficiency of the trapped ions in the course of capillary liquid chromatography (LC) separation studied to be controlled and can increase the useful duty cycle and dynamic range of a FTICR mass spectrometer equipped with an external rf only 2-D quadrupole ion trap.  相似文献   

15.
When fragile molecules such as glycine, polyglycine, alkanes, and alkanethiols are embedded in liquid helium nanodroplets, electron-impact ionization of the beam leads to fragmentation which is as extensive as that of isolated gas-phase molecules. However, it turns out that if a few molecules of water are coembedded with the peptide and alkane chains, their fragmentation is drastically reduced or completely eliminated. On the other hand, the fragmentation of alkanethiols remains unaffected. On the basis of these observations, it is proposed that the fragmentation "buffering" effect may correlate with the magnitude of the impurity's electric dipole moment, which steers the migration of the ionizing He(+) hole in the droplet.  相似文献   

16.
Unimolecular fragmentation reactions of peptides in low-energy collision-induced dissociation are reviewed in the mechanistic context of five-membered ring formation. This structure of intermediates or of fragment ions is recognized as a key element that governs unimolecular peptide fragmentation within the structural framework determined by the peptide backbone and its side-chains. A collection of collision-induced dissociation reactions is presented covering (i) b-ion formation, (ii) the fragmentation of N-terminally acylated peptides, (iii) neutral loss of the C-terminal amino acid in alkali or silver cationized peptides, (iv) the fragmentation of isoAsp-containing peptides and (v) the fragmentation of negatively charged Asp- or Glu-containing peptides. It appears that for all possible nucleophile-electrophile interactions leading to a five-membered ring structure an associated unimolecular peptide fragmentation reaction can be observed.  相似文献   

17.
Glow discharge (GD) source gained an increased level of attention in relation to the analysis of volatile organic compounds (VOCs) since past work showed that this soft ionization method allowed direct analysis of VOCs with minimal fragmentation, however, the issue of fragmentation was not previously studied in detail. The aim of the present work was to investigate the effect of discharge conditions on VOC fragmentation in the system consisting of the cell with pulsed glow discharge and a time-of-flight mass spectrometer. Ionization of VOCs of different classes (hydrocarbons, alcohols, esters, and carboxylic acids) was investigated. A copper cathode with flat geometry was used. VOCs were ionized in the afterglow of short pulse glow discharge in the air. The use of discharge afterglow significantly reduces or eliminates the effects of ionization mechanisms other than Penning process, in particular, electron ionization. This significantly reduced VOC fragmentation and provided rather low limits of detection. Specific cluster formation was observed for alcohols and esters, which may facilitate their identification.  相似文献   

18.
Terpene lactones are a family of compounds with unique chemical structures, first recognised in an extract of Ginkgo biloba. The discovery of terpene lactone derivatives has recently been reported in more and more plant extracts and even food products. In this study, mass spectrometric characteristics of the standard terpene lactones in Ginkgo biloba were comprehensively studied using both an ion trap and a quadrupole time-of-flight (QTOF) mass spectrometer. The mass spectral fragmentation data from both techniques was compared to obtain the mass spectrometric fragmentation pathways of the terpene lactones with high confidence. The data obtained will facilitate the analysis and identification of terpene lactones in future plant research via the fragmentation knowledge reported here.  相似文献   

19.
Protein glycosylation is one of the most common post-translational modifications, estimated to occur in over 50% of human proteins. Mass spectrometry (MS)-based approaches involving different fragmentation mechanisms have been frequently used to detect and characterize protein N-linked glycosylations. In addition to the popular Collision-Induced Dissociation (CID), high-energy C-trap dissociation (HCD) fragmentation, which is a feature of a linear ion trap orbitrap hybrid mass spectrometer (LTQ Orbitrap), has been recently used for the fragmentation of tryptic N-linked glycopeptides in glycoprotein analysis. The oxonium ions observed with high mass accuracy in the HCD spectrum of glycopeptides can be combined with characteristic fragmentation patterns in the CID spectrum resulting from consecutive glycosidic bond cleavages, to improve the detection and characterization of N-linked glycopeptides. As a means of automating this process, we describe here GlypID 2.0, a software tool that implements several algorithmic approaches to utilize MS information including accurate precursor mass and spectral patterns from both HCD and CID spectra, thus allowing for an unequivocal and accurate characterization of N-linked glycosylation sites of proteins.  相似文献   

20.
Phenolic compounds are the major bioactive constituents of Forsythia suspensa, an important Chinese herbal medicine used for the treatment of various infectious diseases. Fragmentation behaviors of the phenolic compounds in F. suspensa were investigated by using a high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS(n)) method. For common phenylethanoid glycosides, the loss of the caffeoyl moiety was the first fragmentation step, then sequential losses of rhamnose, hexose and water were observed in further fragmentations. If a substituent group presented in the beta position, the fragmentation was triggered by initial loss of a substituent group to form structures such as suspensaside A. Then it underwent the common fragmentation pathways as mentioned above, or eliminated characteristic residues of masses 134 or 152 Da, respectively. The latter pathway is reported here for the first time. The fragmentation behaviors of furofuran lignans displayed a typical cleavage of the tetrahydrofuran ring. However, the presence of a hydroxyl group at C-1 led to the successive loss of 30 Da. Neutral loss of CO(2) and benzyl cleavage were characteristic for lignans with a 2,3-dibenzylbutyrolactone skeleton. A neutral loss of 30 Da was also observed in the fragmentation pattern of flavonols. These fragmentation rules were implemented to analyze phenolic compounds in the fruits of F. suspensa. A total of 51 compounds, including 24 phenylethanoid glycosides, 21 lignans and 6 flavonols, were identified or tentatively characterized based on their retention times, UV spectra and MS fragmentation patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号