首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emission spectrum of the B2Σ+-X2Σ+ (First Negative) system of the molecular ion 12C18O+ have been photographed at a resolution sufficient to observe the spin splitting of the lines with N > 18. Four bands, 0-1, 0-3, 1-4 and 2-5, have been rotationally analyzed and the molecular constants of the B2Σ+ , v = 0,1, 2 and X2Σ+ , v =1, 3, 4, 5 have been obtained.  相似文献   

2.
3.
4.
1 INTRODUCTIONMetal ionelectrostaticinterationsarenumerousinchemicalsystemsandhavebeenstudiedextensively[1~ 15] .Specifically ,metal c  相似文献   

5.
6.
ABSTRACT

High-resolution emission spectrum of the 1–4 band of the B 2Σ+X 2Σ+ transition of 14C16O+ was observed for the first time by conventional emission spectroscopy. The band spectrum was excited in a water-cooled Geissler lamp filled with commercial gaseous carbon monoxide enriched in about 80% of the radiocarbon 14C. A rotational analysis has been carried out and obtained molecular constants have been merged with previously published data for the B 2Σ+A 2Πi and A 2ΠiX 2Σ+ transitions. The principal equilibrium constants for the ground X 2Σ+ state obtained from this work are ωe = 2121.7726(98), ωe x e = 13.9055(27), B e = 1.815290(30), αe = 1.6594(33) × 10?2, and γe = ? 0.377(73) × 10?4 cm?1. Also, presently known experimental equilibrium molecular constants of the X 2Σ+ states of the CO+ isotopic molecules are summarized and isotopic dependence of the B e and ω e constants is discussed.  相似文献   

7.
One of the most surprising consequences of quantum mechanics is the entanglement of two or more distant particles. In an entangled EPR two-particle system, the value of the momentum (position) for neither single subsystem is determined. However, if one of the subsystems is measured to have a certain momentum (position), the other subsystem is determined to have a unique corresponding value, despite the distance between them. This peculiar behavior of an entangled quantum system has surprisingly been observed experimentally in two-photon temporal and spatial correlation measurements, such as “ghost” interference and “ghost” imaging. This article addresses the fundamental concerns behind these experimental observations and to explore the nonclassical nature of two-photon superposition by emphasizing the physics of 2 ≠ 1 + 1.  相似文献   

8.
Single-mode cw dye laser excitation spectra of the (0, 0), (1, 1), and (2, 2) bands of the B2Σ+-X2Σ+ system of CaCl have been observed and assigned. Some 300 independent photo-luminescence spectra have been used in making the rotational assignment and demonstrate the power of the technique of line-by-line analysis in unraveling complex spectra. Spectroscopic constants (cm?1) obtained from a weighted least squares fit of the data are given below. Numbers in parentheses refer to 95% confidence limits in the last digit.
  相似文献   

9.
Eu2+–Mn2+ codoped Ca-α-SiAlON phosphors, Ca0.736?ySi9.6Al2.4O0.8N15.2:0.064 Eu2+, yMn2+, were firstly synthesized by the high temperature solid state reaction method. The effects of doped Eu2+ and Eu2+–Mn2+ concentrations on the photoluminescence properties of the as-prepared phosphors were investigated systematically. Powder X-ray diffraction shows that pure Ca-α-SiAlON phase is synthesized after sintering at 1700 °C for 2 h under 0.5 MPa N2 atmosphere. The excitation spectra of Eu2+-doped Ca-α-SiAlON phosphors are characterized by two dominant bands centered at 286 nm and 395 nm, respectively. The photoluminescent spectrum of Eu2+-doped Ca-α-SiAlON phosphor exhibits an intense emission band centered at 580 nm due to the allowed 4f 65d→4f 7 transition of Eu2+, showing that the phosphor is a good candidate for creating white light when coupled to a blue LED chip. The intensities of both excitation and emission spectra monotonously decrease with the increment of codoped Mn2+ content (i.e. y value), indicating that energy transfer between Eu2+ and Mn2+ is inefficient in the case of Eu2+–Mn2+ codoped Ca-α-SiAlON phosphors.  相似文献   

10.
Carbon sulfide cation(CS~+) plays a dominant role in some astrophysical atmosphere environments. In this work, the rovibrational transition lines are computed for the lowest three electronic states, in which the internally contracted multireference configuration interaction approach(MRCI) with Davison size-extensivity correction(+Q) is employed to calculate the potential curves and dipole moments, and then the vibrational energies and spectroscopic constants are extracted. The Frank–Condon factors are calculated for the bands of X~2~+Σ~+–A~2Π and X~2Σ~+–B~2Σ~+systems, and the band of X~2Σ~+–A~2Π is in good agreement with the available experimental results. Transition dipole moments and the radiative lifetimes of the low-lying three states are evaluated. The opacities of the CS~+ molecule are computed at different temperatures under the pressure of 100 atms. It is found that as temperature increases, the band systems associated with different transitions for the three states become dim because of the increased population on the vibrational states and excited electronic states at high temperature.  相似文献   

11.
The radiative lifetimes of several vibrational levels of Cl2 + A 2Π u are measured by a novel technique. A uniform electric field extracts the ions from the observation region of a spectrometer, and the decrease of fluorescence signal as a function of the electric field strength is measured to obtain the radiative lifetime. Measurements are made on 20 different vibronic bands of the Cl2 + A 2Π u -X 2Π g system, and the results are compared with other methods. An attempt is made to correlate the results with the highly perturbed spectroscopic nature of the A 2Π u electronic state.  相似文献   

12.
The First Negative bands of 12C16O+ and 13C16O+, in the spectral region 40 000–46 000 cm−1, have been photographed at a resolution sufficient to resolve the spin-doubled components. These data for 12C16O+, along with previously reported data of the same transitions, as well as microwave transitions of 12C16O+ in the ground state, have been explicitly included in a least-squares fit to determine the most precise set of molecular constants to date for the B2Σ+ and X2Σ+ states of 12C16O+. Furthermore, we report a rotational analysis of the First Negative bands of 13C16O+ for the first time. Several molecular constants characterizing 13C16O+ in the B2Σ+ and the X2Σ+ states, including spin-doubling parameters, have been determined.  相似文献   

13.
The effects of isotope substitution on stereodynamic properties for the reactions C~+ + H_2/HD/HT →CH~+ + H/D/T have been studied applying a quasi classical trajectory method occurring on the new ground state CH_2~+ potential energy surface [J. Chem. Phys. 142(2015) 124302]. In the center of mass coordinates applying the quasi classical trajectory method to investigate the orientation and the alignment of the product molecule. Differential cross section and three angle distribution functions P(θ_r), P(ф_r), P(θ_r, ф_r) on the potential energy surface that fixed the collision energy with a value is 40 kcal/mol have been studied. The isotope effect becomes more and more important with the reagent molecules H_2 changing into HD and HT. P(θ_r, ф_r) as the joint probability density function of both polar angles θ_r and ф_r, which can illustrate more detailed dynamics information. The isotope effect is obvious influence on the properties of stereodynamics in the reactions of C~+ + H_2/HD/HT → CH~+ + H/D/T.  相似文献   

14.
Nanocrystalline samples of PbF2 doped with 0.05, 0.1, 0.4 and 1 mol% Mn2+, used as paramagnetic probe, were prepared by inert gas condensation technique. All the samples were vacuum annealed at different temperatures to get different grain sizes. The X-ray diffraction studies showed the dominant content of -PbF2 phase with a fractional quantity of -PbF2. Thermal stability and sublattice melting were studied by TGA and DSC respectively. EPR measurements were made on all these samples at 77 and 300 K. The EPR spectra of all samples were found to contain well resolved sextet arising from the Mn2+ ions that occupied the cubic sites of Pb2+ ion of PbF2 lattice. The lower concentration of the Mn2+ ions (0.05 and 0.1 mol%) clearly monitored the Pb2+ environment in the PbF2 lattice. The 0.4 mol% showed the presence of only the cubic sites with a minor concentration of the orthorhombic sites. The spectra corresponding to 1 mol% Mn2+ clearly showed two different components. The isotropic nature of the 1 mol% as-prepared sample implied that there was no cluster formation and hence this EPR spectrum was taken as the single ion spectrum. The annealed samples contain two spectral components; one is from the isolated single ions and the other one from the Mn2+ clusters. The spectral component of Mn2+ clusters was obtained by subtracting the spectrum for the as-prepared sample for the spectra of annealed samples. The extracted cluster phase spectra and the pure spectrum from the as-prepared sample were then combined to simulate the entire set of experimental spectra. The simulated spectra were found to be in good agreement with the experimental data. The g values obtained were in the range very close to the free electron g factor as the electrons are in the S state (L=0).  相似文献   

15.
Russian Physics Journal - The ν2 + ν10 (Bu) hybrid band of the trans-C2H2D2 molecule in the region 2100–2300 cm–1 is studied for the first time. The spectrum has been analyzed...  相似文献   

16.
New type photocatalytic materials of Zn2+–Ni2+–Fe3+–CO32?LDHs were prepared by complexing agent-assisted homogeneous precipitation technique and Zn(NO3)2·6H2O, Ni(NO3)·6H2O, Fe(NO3)3·9H2O used as raw materials in the case of molar ratio of Zn2+/Ni2+/Fe3+ = 1:6:2. Zn2+–Ni2+–Fe3+–CO32?LDHs having a specific surface area of 96.5 m2/g. The structure and catalytic properties of the material were systematically studied. The experimental results show that the Zn2+–Ni2+–Fe3+–CO32?LDHs has a higher adsorption performance and lower band gap which make it an excellent catalyst for reducing the degradation of the methyl orange. Study on the process of photocatalytic reaction shows that Methyl Orange was adsorbed to the layer of Zn2+–Ni2+–Fe3+–CO32?LDHs, and then it was photodecomposed to inorganic molecules and ions by Zn2+, Ni2+, and Fe3+ on the surface of Zn2+–Ni2+–Fe3+–CO32?LDHs.  相似文献   

17.
Abstract

Three new bands of the B 2Σ+X 2Σ+ system of 12C17O+ have been investigated using conventional spectroscopic techniques. The spectra were observed in a graphite hollow‐cathode lamp by discharging molecular oxygen (enriched in about 45% of the 17O2 isotope) under 1.0 Torr pressure. The rotational analysis of the 2–4, 2–5, and 2–6 bands was performed with the effective Hamiltonian of Brown (Brown et al., J. Mol. Spectrosc. 1979; 74: 294–318). Molecular constants were derived from a merge calculation, including both the current wavenumbers and the spectroscopic data published by the authors previously. The principal equilibrium constants for the ground state of 12C17O+ are ωe=2185.9658(84), ωe x e = 14.7674(11), B e=1.927001(38), αe=1.8236(22)×10?2, γe=?0.331(28)×10?4, D e=6.041(12)×10?6, βe=0.100(31)×10?7 cm?1, and the equilibrium constants for the excited state are σe=45876.499(15), ωe=1712.201(12), ωe x e=27.3528(39), B e=1.754109(35), αe=2.8706(57)×10?2, γe = ?1.15(19)×10?4, D e=7.491(20)×10?6, βe=2.13(12)×10?7, γe = 2.0953(97)×10?2, and αγe=?9.46(59)×10?4 cm?1, respectively. Rydberg–Klein–Rees potential energy curves were constructed for the B 2Σ+ and X 2Σ+ states of this molecule, and Franck–Condon factors were calculated for the vibrational bands of the BX system.  相似文献   

18.
Conventional high-resolution photographic spectroscopy has been employed to study the B2Σ-X2Σ emission system of zinc deuteride in the region 280–370 nm. The B-X system of ZnD is reported for the first time and 17 such bands have been rotationally analyzed. Many local rotational perturbations have been found in the B state and are attributable to interactions with the A2Π state. The rotational and vibrational data for ZnH (after Stenvinkel) and ZnD are complementary and enable the RKR curve for the B state to be mapped with reasonable accuracy for almost 10 000 cm−1. B-X Franck-Condon factors for ZnH and ZnD are also reported.  相似文献   

19.
The potential of the lowest excited singlet state of He2 is calculated. The best function includes 209 configurations constructed from 10 σ basis orbitals. Excellent agreement with experimental quantities depending on the shape of the potential near the minimum (equilibrium interatomic separation, vibrational and rotational constants for the lower vibration levels) is obtained. The dissociation energy is 18 600 cm-1, compared to the experimental 19 910±50 cm-1. Agreement is not as good for the highest vibrational levels.  相似文献   

20.
EPR (X- and Q-band) and electron spin relaxation measured by electron spin echo method (X-band) were studied for Ti2+(S=1) and Ti2+Ti2+ pairs in SrF2 crystal at room temperature and in the temperature range 4.2–115 K. EPR spectrum consists of a strong line from Ti2+ and quartets 2:3:3:2 from titanium pairs (S=2). Spin-Hamiltonian parameters of the pairs are g=1.883, g=1.975 and D=0.036cm-1. Temperature behavior of the dimer spectrum indicates ferromagnetic coupling between Ti2+. Spin–lattice relaxation of individuals Ti2+ is dominated by the ordinary two-phonon Raman process involving the whole phonon spectrum up to the Debye temperature ΘD=380K with spin–phonon coupling parameter equal to 215cm-1. Important contribution to the relaxation arises from local mode vibrations of energy 133cm-1. The pair relaxation is faster due to the exchange coupling modulation mechanism with the relaxation rate characteristic for ferromagnetic ground state of the pairs 1/T1[exp(2J/kT)-1]-1 which allowed to estimate the exchange coupling J=36cm-1. The theories of electron–lattice relaxation governed by exchange interaction are outlined for extended spin systems, for clusters and for individual dimers. Electron spin echo decay is strongly modulated by coupling with surrounding 19F nuclei. FT-spectrum of the modulations shows a dipolar splitting of the fluorine lines, which allows the evaluation of the off-center shift of Ti2+ in pair as 0.132 nm. The electron spin echo dephasing is dominated by an instantaneous diffusion at low temperatures and by the spin–lattice relaxation processes above 18 K.  相似文献   

X2Σ+B2Σ+
Te016856.69(2)
ωe369.8(10)366.8(10)
ωexe1.13(20)1.28(20)
Be0.15200(54)0.15448(54)
αe0.00063(34)0.00073(35)
De1.027(16) × 10?71.097(17) × 10?7
γe (spin-rotation)+0.003?0.0630(16)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号