首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract

During the course of synthesis of both a linear and a cyclic enkephal in pseudopeptide containing a ψ[CH2S] amide bond replacement, two isomeric products were produced in each case in virtually equimolar quantities. RP-HPLC was used to: 1) isolate and characterize both pairs of products; 2) confirm their sulfide content by partial oxidation to their ψ[CH2SO] equivalents, with two new pairs of diastereomeric sulfoxides formed in each case, and 3) confirm that the isomers were formed by epimerization of the C-terminal alpha carbon of the pseudopeptide, H-Tyr-D-Ala-Gly-Pheψ[CH2S]Leu-OH and its cyclic counterpart in an early synthetic step. Both the presence and the absolute configurations of the new epimeric center were further established by RP-HPLC. This involved acid catalyzed hydrolysis and comparison of the resulting HPLC-isolated pseudodipeptides with authentic species of Pheψ[CH2S]Leu and Pheψ[CH2S]D-Leu prepared by controlled stereochemical routes.  相似文献   

2.
Cyclic polysulfides isolated from higher plants, model compounds and their electron impact induced fragment ions have been investigated by various mass spectrometric methods. These species represent three sets of sulfur compounds: C3H6Sx (x=1?6), C2H4Sx (x=1?5) and CH2Sx (x=1?4). Three general fragmentation mechanisms are discussed using metastable transitions: (1) the unimolecular loss of structural parts (CH2S, CH2 and Sx); (2) fragmentations which involve ring opening reactions, hydrogen migrations and recyclizations of the product ions ([M? CH3]+, [M? CH3S]+, [M? SH]+ and [M? CS2]); and (3) complete rearrangements preceding the fragmentations ([M? S2H]+ and [M? C2H4]). The cyclic structures of [M] and of specific fragment ions have been investigated by comparing the collisional activation spectra of model ions. On the basis of these results the cyclic ions decompose via linear intermediates and then recyclizations of the product ions occur. The stabilities of the fragment ions have been determined by electron efficiency vs electron energy curves.  相似文献   

3.
The Ψ[CH2NH] reduced amide bond is a peptide isostere widely used in the development of bioactive pseudopeptides. Reported here is a method of chemoenzymatic posttranslational modification for the synthesis of Ψ[CH2NH]‐containing peptides converted from ribosomally expressed peptides. The posttranslational conversion composed of an enzymatic cyclodehydration and facile two‐step chemical reduction achieves deoxygenation of a specific amide bond present in a nonprotected peptide in water. This method generates the Ψ[CH2NH] bond in peptides and is applicable to various peptide sequences, potentially enabling the preparation of a library of Ψ[CH2NH]‐containing peptides.  相似文献   

4.
The Ψ[CH2NH] reduced amide bond is a peptide isostere widely used in the development of bioactive pseudopeptides. Reported here is a method of chemoenzymatic posttranslational modification for the synthesis of Ψ[CH2NH]-containing peptides converted from ribosomally expressed peptides. The posttranslational conversion composed of an enzymatic cyclodehydration and facile two-step chemical reduction achieves deoxygenation of a specific amide bond present in a nonprotected peptide in water. This method generates the Ψ[CH2NH] bond in peptides and is applicable to various peptide sequences, potentially enabling the preparation of a library of Ψ[CH2NH]-containing peptides.  相似文献   

5.
The fragmentations of tetramethoxysilane ((CH3O)4Si (1)) and trimethoxymethylsilane ((CH3O)3SiCH3 (3)) induced by electron impact were investigated by mass-analysed ion kinetic energy (MIKE) spectrometry and a deuterium-labelling study. These molecular ions begin to fragment by the loss of CH3 or CH3O. These fragmentations are followed by the loss of an aldehyde molecule (H2CO), as commonly observed in the mass spectra of alkoxysilanes. Almost complete scrambling of the methoxy hydrogens takes place in the metastable molecular ion, [1]+˙, prior to the decomposition. On the other hand, a moderate extent of scrambling of the hydrogens takes place in [3]+˙. The fragmentations of [1]+˙ and [3]+˙ were compared with those of the corresponding carbon analogues, tetramethoxymethane ((CH3O)4C (2)) and 1,1,1-trimethoxyethane ((CH3O)3CCH3 (4)), respectively.  相似文献   

6.
Gas-phase interactions of peptides that contain cysteine with iron(II) atoms were examined by using fast-atom bombardment and tandem mass spectrometry. Specific and strong interactions of iron and sulfur from the thiol group of the cysteine side chain occur in the gas phase and are the basis for highly specific fragmentation to give abundant [a n ?+ ions. For peptides that contain two cysteines, an internal ion, which results from the interaction of Fe and both thiol groups, is formed upon collisional activation. The mechanism for the formation of [a n ?2H+Fe]+ fragment ions requires the metal to be coordinated at sulfur in close proximity to the site of reaction. Iron-bis(pentapeptide) complexes, which form under the same conditions, decompose predominantly to lose a pentapeptide molecule and, to a lesser extent, to give [a a ?2H+Fe]+ ions.  相似文献   

7.
The electron impact (EI) ionization-induced fragmentation pathways of the new 1,9-bis(dimethylamino) phenalenium cation [1]+ were investigated. The peri-dimethylamino substituents of [1]+ are incorporated in a trimethine cyanine substructure and show strong steric interactions. A mechanism is proposed for the unusual elimination of CH3N?CH2, HN(CH3)2 and (CH3)3N from [1]+ and for the accompanying cyclizations to heterocyclic ions: prior to fragmentation, the intact cation [1]+ rearranges, by reciprocal CH3 and H transfers, to new isomeric cations which decompose subsequently in a characteristic way. A wealth of consistent information on dissociation pathways and fragment structures is provided by collision-induced dissociation tandem mass spectra, collision-induced dissociation mass-analysed ion kinetic energy spectra and exact mass measurements of the salt cation and of its primary fragment ions. The liquid secondary ion mass spectrum of [1]+ is very similar to its EI mass spectrum.  相似文献   

8.
We examined the fragmentation of the electrospray-produced [M-H]- and [M-2H]2- ions of a number of peptides containing two acidic amino acid residues, one being aspartic acid (Asp) or glutamic acid (Glu), and the other being cysteine sulfinic acid [C(SO2H)] or cysteine sulfonic acid [C(SO3H)], on an ion-trap mass spectrometer. We observed facile neutral losses of H2S and H2SO2 from the side chains of cysteine and C(SO2H), respectively, whereas the corresponding elimination of H2SO3 from the side chain of C(SO3H) was undetectable for most peptides that we investigated. In addition, the collisional activation of the [M-H]- ions of the C(SO2H)-containing peptides resulted in the cleavage of the amide bond on the C-terminal side of the C(SO2H) residue. Moreover, collisional activation of the [M-2H]2- ions of the above Asp-containing peptides led to the cleavage of the backbone N-Calpha bond of the Asp residue to give cn and/or its complementary [zn-H2O] ions. Similar cleavage also occurred for the singly deprotonated ions of the otherwise identical peptides with a C-terminal amide functionality, but not for the [M-H]- ions of same peptides with a free C-terminal carboxylic acid. Furthermore, ab initio calculation results for model cleavage reactions are consistent with the selective cleavage of the backbone N-Calpha bond in the Asp residue.  相似文献   

9.
The chemistry of glycerol subjected to a high-energy particle beam was explored by studying the mass spectral fragmentation characteristics of gas-phase protonated glycerol and its oligomers by using tandem mass spectrometry. Both unimolecular metastable and collision-induced dissociation reactions were studied. Collision activation of protonated glycerol results in elimiation of H2O and CH3OH molecules. The resulting ions undergo further fragmentations. The origin of several fragment ions was established by obtaining their product and precursor ion spectra. Corresponding data for the deuterated analogs support those results. The structures of the fragment ions of compositions [C3H5O]+, [C2H5O]+, [C2H4O]+. and [C2H3O]+ derived from protonated glycerol were also identified. Proton-bound glycerol oligomers fragment principally via loss of neutral glycerol molecules. Dissociation of mixed clusters of glycerol and deuterated glycerol displays normal secondary isotope effects.  相似文献   

10.
B ions represent an important type of fragment ions derived from protonated peptides by cleavage of an amide bond with N-terminal charge retention. Such species have also been discussed as key intermediates during cyclic peptide fragmentation. Detailed structural information on such ion types can facilitate the interpretation of multiple step fragmentations such as the formation of inner chain fragments from linear peptides or the fragmentation of cyclic peptides. The structure of different b2 ion isomers was investigated with collision-induced dissociations (CID) in combination with hydrogen/deuterium (H/D) exchange of the acidic protons. Special care was taken to investigate fragment ions derived from pure gas-phase processes. Structures deduced from the results of the CID analysis were compared with structures predicted on the basis of quantum chemical density functional theory (DFT) calculations to be most stable. The results pointed to different types of structures for b2 ion isomers of complementary amino acid sequences. Either the protonated oxazolone structure or the N-terminally protonated immonium ion structure were proposed on the basis of the CID results and the DFT calculations. In addition, the analysis of different selectively N-alkylated peptide analogs revealed mechanistic details of the processes generating b ions.  相似文献   

11.

A novel fragmentation of metastable peptide [M + H]+ ions is described. Loss of the C-terminal amino acid residue is accomqanied by retention of one of the carboxyl oxygens, as judged by 18O-labeling. The retained 8O label is located at the new C-terminus. Sequential mass spectrometric analyses indicate that the structure of the first-generation product ion is indistinguishable from that of the [M + H]+ ion of the peptide with one fewer amino acid residues. Thus, for example, the metastable decompositions of ions of m/z 904 are similar whether they correspond to des-Arg9-bradykinin [M + H]+ ions or to fragments derived from bradykinin [M + H]+ ions. No corresponding rearrangements have been observed for peptides with C-terminal amide or ester functions. The mechanism of this fragmentation may be considered to be analogous to that previously suggested for fragmentations of [M + alkali metal cation]+ ions. For the examples of bradykinin and related peptides, the rearrangement is strongly promoted when arginine is the amino acid residue lost. The same fragmentation is also favored by the presence of an arginine residue at or near the N-terminus. The strong influence of peptide amino acid composition, including residues remote from the C-terminus, on the prevalence of this fragmentation suggests mechanistic complexities that require further elucidation.

  相似文献   

12.
The loss of water from protonated peptides was studied using [18O]-labeling of the C-terminal carboxyl group. The structures (including the location of the isotopic label) of first-generation product ions were examined by sequential product ion scanning (MS3 and MS4) using a hybrid sector/quadrupole mass spectrometer. Water loss may involve carboxylic acid groups, side-chain hydroxyls, or peptide backbone oxygens. Although one of these three pathways often predominates, more than one dehydration route can be operative for a single peptide structure. When peptide backbone oxygen is lost, the dehydration can occur at one or two primary sites along the backbone, with the location of the site(s) varying among peptides. When water loss involves the C-terminal carboxyl group, the resulting ion may undergo extensive intraionic oxygen isotope exchange. This evidence for complex intraionic interactions further emphasizes the significance of gas-phase conformation in determining the fragmentations of peptide ions.  相似文献   

13.
Two new isomeric aminomethyl corrole derivatives of [5,10,15‐tris(pentafluorophenyl)corrolato]gallium(III) were synthesized with pyridine (py) molecules as axial ligands. When investigated by electrospray ionization mass spectrometry, in the positive and the negative ion modes, these compounds showed an unusual gas‐phase behavior that could be used for their differentiation. In the positive ion mode, the differentiation was achieved through the formation of diagnostic fragment ions formed from [M‐py + H]+ precursors, by (CH3)2NH and HF losses. An unusual addition of water to the main fragment ions provides an alternative route for isomer identification. Semi‐empirical calculations were performed to elucidate the structures and stabilities of the main ionic species formed in the positive ion mode. In the negative ion mode isomer discrimination is accomplished via the fragmentation of the methoxide adduct ions [M‐py + CH3O] through (CH3)2 N. and HF losses. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The energetics, metastable characteristics and daughter ion structures for the loss of small alkane molecules from ionized 2-propanol, 2-butanol and 3-pentanol have been examined in detail. [2-Propanol] ions lose CH4 to generate the keto and enol forms of [C2H4O] and the same daughter ions are produced by loss of C2H6 from [2-butanol]. Ionized 3-pentanol does not lose CH4 but readily eliminates C2H6 to produce the enol ion [CH3CH?CHOH]. The last reaction was shown to proceed by a simple 1,2 elimination mechanism in the μs time-frame; isotope effects are also discussed.  相似文献   

15.
The doubly-protonated peptides Ala-Ala-Xaa-Ala-Ala-Ala-Arg show extensive loss of H2O when Xaa = Ser or Thr. Using quasi-MS3 techniques the fragmentation reactions of the [M + 2H – H2O]+2 ions have been studied in detail. For both Ser and Thr, the [M + 2H – H2O]+2 ions show three primary fragmentation reactions, elimination of CH3CH = NH, elimination of one Ala residue, and elimination of two Ala residues, in all cases forming doubly-charged products. From a study of the further fragmentation of these products, it is concluded that elimination of two Ala residues results in formation of a three-membered aziridine ring by interaction with the adjacent amide function as H2O is lost. The elimination of one Ala residue results in formation of a five-membered oxazoline ring through interaction with the N-terminal adjacent carbonyl function as H2O is lost. The elimination of CH3CH = NH appears to involve formation of an eight-membered ring by interaction with the remote N-terminal carbonyl function as H2O is lost. However, this initial structure undergoes rearrangement through interaction with the adjacent C-terminal carbonyl function prior to further fragmentation. The [MH – H2O]+ ion of Ala-Ala-Ser-Ala-Ala-Ala also shows elimination of CH3CH = NH, one Ala residue and two Ala residues.  相似文献   

16.
A study was carried out on the fragmentation of 12 protonated O,O-dimethyl O-aryl phosphorothionates by tandem quadrupole mass spectrometry. Some of the studied compounds are used in agriculture as pesticides. Energy-resolved and pressure-resolved experiments were performed on the [M + H]+ ions to investigate the dissociation behavior of the ions with various amounts of internal energy. On collisionally activated dissociation, the [M + H]+ ions decompose to yield the [M + H ? CH3OH]+, (CH3O)2PS+ (m/z 125), and (CH3O)2PO+ (m/z 109) ions as major fragments. The ions [M + H ? CH3OH]+ and (CH3O)2PS+ probably arise from the [M + H]+ ions of the O,O-dimethyl O-aryl phosphorothionates with the proton on the sulfur or on the oxygen of the phenoxy group. The origin of the hydroxy proton of the methanol fragment was in many cases, surprisingly, the phenyl group and not the reagent gas. This was confirmed by using deuterated isobutane, C4D10, as reagent gas in Cl. The fragment ions (CH3O)2PO+ and [ZPhS]+ are the results of thiono-thiolo rearrangement reaction. The precursor ion for the ion (CH3O)2PO+ arises from most compounds upon chemical ionization, whereas the precursor ion for the ion [ZPhS]+ arises only from a few compounds upon chemical ionization. The observed fragments imply that several sites carry the extra proton and that these sites get the proton usually upon ionization. The stability order and some characteristics of three protomers of O,O-dimethyl O-phenyl phosphorothionate were investigated by ab initio calculations at the RHF/3-21G* level of theory.  相似文献   

17.
The decomposing molecular cations derived from (substituted) 2-nitrothiobenzamides fragment by complex rearrangement reactions. When the alkyl substituents (R) attached to N are methyl, the major fragmentations are [M]+˙ → [M? SO] and [M? SO] → [(M? SO)–R˙]+. This remains a basic pathway when R ? Et, but other rearrangements are also observed. For example, when R=Et, additional competitive processes are [M] → [M? HO˙]+ and [M] → [M? C2H4O]+˙.  相似文献   

18.
Although integral to remote marine atmospheric sulfur chemistry, the reaction between methylsulfinyl radical (CH3SO) and ozone poses challenges to theoretical treatments. The lone theoretical study on this reaction reported an unphysically large barrier of 66 kcal mol−1 for abstraction of an oxygen atom from O3 by CH3SO. Herein, we demonstrate that this result stems from improper use of MP2 with a single-reference, unrestricted Hartree-Fock (UHF) wavefunction. We characterized the potential energy surface using density functional theory (DFT), as well as multireference methodologies employing a complete active-space self-consistent field (CASSCF) reference. Our DFT PES shows, in contrast to previous work, that the reaction proceeds by forming an addition adduct [CH3S(O3)O] in a deep potential well of 37 kcal mol−1. An O−O bond of this adduct dissociates via a flat, low barrier of 1 kcal mol−1 to give CH3SO2+O2. The multireference computations show that the initial addition of CH3SO+O3 is barrierless. These results provide a more physically intuitive and accurate picture of this reaction than the previous theoretical study. In addition, our results imply that the CH3SO2 formed in this reaction can readily decompose to give SO2 as a major product, in alignment with the literature on CH3SO reactions.  相似文献   

19.
Methane or a methane–oxygen mixture was used as an enhancement gas to obtain negative ion mass spectra of polychloroanisoles. Dichloroanisoles did not react with oxygen but the more highly chlorinated anisoles did. Compounds with hydrogen ortho to the methoxy group had [M? 1]? ions, while others gave . The fragment arose through loss of an ortho chlorine and amethyl hydrogen. The loss of HCl followed by oxygen displacement of a remaining ortho or para chlorine produced [M? 55]? ions; the para position was the preferred site of displacement. Another ion-molecule reaction with oxygen leads to [M? CH2Cl]?. The fragmentations resemble those of chlorinated aromatics such as the polychlorodibenzodioxins.  相似文献   

20.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号