首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
在工业锅炉烟气处理领域,由于锅炉容量低,烟气温度往往无法满足传统选择性催化还原(SCR)所需温度窗口.工业锅炉烟气成分的复杂性也给氮氧化物治理带来了严峻考验.臭氧深度氧化NO结合湿法洗涤同时脱硫脱硝技术具有独特的应用优势.传统臭氧氧化技术中,NO被臭氧氧化为NO_2,进而在脱硫塔中实现一体化脱硫脱硝.但由于NO_2溶解度相对较低,需要在脱硫浆液中加入添加剂提高脱硝效率,造成运行成本增加.NO经臭氧深度氧化后,NO_2进一步转化为溶解度高的N_2O_5,传统脱硫石膏浆液即可实现高效吸收N_2O_5,从而有效提高氮氧化物吸收效率.但由于N_2O_5生成反应速率低,深度氧化存在臭氧投入量大、反应时间长及臭氧残留多的缺点.臭氧耦合催化剂深度氧化NO可有效解决以上问题.首先,本文采用溶胶-凝胶法合成一系列单金属氧化物(Mn,Co,Ce,Fe,Cu,Cr)作为臭氧深度氧化NO的催化剂.结果发现锰氧化物表现出最高的催化活性,在70 ℃下,O_3/NO摩尔比为2.0时经过0.12 s的反应时间催化剂即可实现80%以上的转化效率.但根据N_2O_5生成的总包反应(2NO+3O_3=N_2O_5+3O_2)可以看出,O_3/NO摩尔比为1.5时即可实现N_2O_5的完全转化.由于催化臭氧氧化反应温度较低,中间产物在催化剂表面聚集,占据大量活性位,进而导致无法实现1.5摩尔比的高效转化.通过采用球形氧化铝作为载体,避免粉末状催化剂紧凑型布置,增加换热面积,可有效降低催化剂表面中间产物聚集;同时延长了气体与催化剂的接触时间,提高反应效率.在球形氧化铝载体上负载锰基双金属氧化物(Ce-Mn,Fe-M,Cr-Mn,Cu-Mn和Co-Mn),在初始NO浓度为410 mg/m~3,反应温度100 ℃,O_3/NO摩尔比1.5,催化反应时间0.12 s的工况下,催化剂最终实现95%(Fe-Mn)和88%(Ce-Mn)的转化效率,剩余NO和NO_2的浓度分别低于20 mg/m~3(Fe-Mn)和50 mg/m~3(Ce-Mn),臭氧残留浓度低于25 mg/m~3.同负载单一锰氧化物(83%转化率)相比,双金属氧化物进一步提高了N_2O_5生成效率.因此,臭氧耦合催化剂深度氧化NO结合湿法吸收在工业锅炉超低排放(NO_x50 mg/m~3)领域具有广泛应用前景.通过XRD、氮气吸附、H2-TPR和XPS等手段研究了催化剂的晶体结构、孔结构参数、氧化还原性能和表面原子价态.催化臭氧深度氧化NO主要与催化剂对臭氧的分解性能和对NO的氧化性能有关.较大的比表面积和孔容有利于催化剂的吸附.氧空位有利于臭氧的吸附和分解.Mn~(4+)和Mn~(3+)的均衡分布既有利于NO的吸附氧化又有利于臭氧的吸附分解,最终提高了N_2O_5生成效率.  相似文献   

2.
采用柠檬酸-溶胶凝胶法制得钙钛矿型复合氧化物La0.8Ce0.2Mn1-xCuxO3(x=0.2,0.3,0.4),La0.8Sr0.2Mn0.6Cu0.4O3,La0.8Ce0.1Sr0.1Mn0.6 Cu0.4 O3,并采用X射线衍射(XRD)、扫描电镜(SEM)、比表面积(BET)、X射线光电子能谱(XPS)对其进行表征,测试了复合氧化物对CO+NO的催化活性。结果表明:La0.8Ce0.1Sr0.1Mn0.6Cu0.4O3催化活性最好,150℃时CO转化率91.8%,300℃时NO转化率100%;对于La0.8Ce0.2Mn1-xCuxO3(x=0.2,0.3,0.4),比表面积和颗粒的大小及分散度是影响催化活性的主要因素;对于La0.8Ce0.2Mn0.6Cu0.4O3,La0.8 Sr0.2 Mn0.6 Cu0.4 O3,La0.8 Ce0.1 Sr0.1 Mn0.6 Cu0.4 O3,催化剂的组成是影响催化活性的关键因素。  相似文献   

3.
采用柠檬酸络合法制备了锰锆复合氧化物催化剂,用XRD、H_2-TPR、XPS和SEM等技术进行了表征,研究了其CO催化还原NO性能。结果表明,MnO_x主要以Mn_3O_4物相存在,Zr占比的增加会促进Mn_3O_4物相的分散,引起Mn_3O_4平均晶粒粒径减小;Mn主要有Mn~(2+)、Mn~(3+)、Mn~(4+)离子价态形式,添加Cu和Ce后,(Mn~(3+)+Mn~(4+))含量和表面吸附氧(OA)含量增加,H_2-TPR还原峰温度向低温区偏移,有利于催化活性的提升。Mn-Zr-O复合氧化物的CO催化还原NO活性较低,加入Cu后的Mn-Cu-Zr-O复合氧化物其CO催化还原NO的活性得到改善,而添加Ce后所制备的Mn-Cu-Ce-Zr-O复合氧化物的催化活性进一步提高;在350℃下、反应空速为18000 h~(-1)时,Mn-Cu-Ce-Zr-O复合氧化物表现出较好的CO催化还原NO活性,CO转化率达到了89.17%,NO转化率达到了91.70%。  相似文献   

4.
采用等体积浸渍法制备了Cu Mn-O/γ-Al_2O_3、Cu Mn Ce-O/γ-Al_2O_3和Cu Mn Ce La-O/γ-Al_2O_3催化剂.用XRD、BET、SEM、XPS和H_2-TPR技术对其物相和表面性质进行了表征.在连续固定床微反装置上评价了催化剂的CO+O_2和CO+NO反应性能.结果表明,催化剂样品中观测不到Cu O、Mn O_x、Ce O_2和La_2O_3的XRD晶相峰,活性组分在γ-Al_2O_3载体表面呈高度分散状态.Ce、La的引入对催化剂的比表面积、孔容和孔径分布影响不大.SEM谱图中未观测到活性组分的形貌,金属氧化物在载体表面均匀分布.Ce~(3+)!Ce~(4+)之间的可变价转换,引起Cu Mn Ce-O/γ-Al_2O_3催化剂表相Cu O中具有非完整结构的[Cu~(2+)_(1-x)Cu_x~+][O_(1-2)1_x□1_(2x)]增多,Cu~+/Cu~(2+)比例增大,表相氧空位增多,H_2-TPR还原峰温度向低温区偏移.Ce~(4+)、La~(3+)之间不平衡电荷以及共生过程中Cu-Mn-Ce-La-O之间的强相互作用,加大了Cu O和Mn O_x结构的不完整性,导致Cu Mn Ce La-O/γ-Al_2O_3催化剂样品表相产生更多的Cu~+、Mn~(2+)、Mn~(3+)和氧空位,相应的H_2-TPR还原峰温度进一步向低温区偏移.催化氧化CO和CO催化还原NO实验结果表明,在反应空速20 000 h~(-1),350℃反应温度下,Cu Mn Ce La-O/γ-Al_2O_3催化剂CO催化还原NO反应的CO转化率达到88.2%,NO转化率达到了96.1%,表现出了较好的氧化还原活性.  相似文献   

5.
CO_2的化学转化具有环境及科学双重研究意义.CO_2具有很高的化学稳定性,加氢还原是一种有效的转化途径.其中将CO_2选择性还原为CO,即逆水汽变换(RWGS)反应(CO_2+H_2→CO+H_2O),具有重要的理论意义和应用价值:(1)CO作为合成气的重要原料,可以通过F-T合成生产更有价值的液体燃料;(2)H_2可通过可再生能源电解水制取,实现了全过程的零排放碳循环利用.从热力学角度分析,RWGS反应是一个吸热反应,高温有利于平衡转化率的提高.从动力学角度,一个对正反应有活性的催化剂可同时催化逆反应进行.可还原性载体负载贵金属催化剂,如Pt/Ce O_2,Au/Fe Ox,Au/Ce O_2等,具有很好的低温WGS催化活性,但它们在RWGS反应上的研究较少.我们制备了Ce O_2负载纳米Au催化剂(HRTEM表征结果表明金高度分散于Ce O_2载体表面,粒径为4–5 nm),其在常压CO_2加氢还原为CO反应中表现出优异的低温活性,分别在450°C,CO_2/H2=1,WHSV=12000 m L/(h·g),及400°C,H_2/CO_2=1,WHSV=6000 m L/(h·g)条件下,CO_2转化率接近平衡转化率,且CO的选择性为100%.随着H2/CO_2比例增加,CO_2转化率明显提高,且维持H_2/CO_2为1的化学计量比反应.通过原位漫反射红外光谱与质谱相结合的技术,研究了Au/Ce O_2催化剂上的RWGS反应路径:Au/Ce O_2催化剂表面形成了甲酸盐中间物种,它的消耗伴随着CO和H_2O产物的生成.说明Au/Ce O_2催化剂遵循中间体机理,这应该是其具有优异低温RWGS反应性能的微观机制.  相似文献   

6.
采用了不同沉淀剂(K_2CO_3、Na_2CO_3、NaOH、NaHCO_3)制备了一系列Co_3O_4氧化物催化剂.通过XRD、XPS、BET、H2-TPR、O_2-TPD表征手段,探究了催化剂物相结构和氧化还原性能对N_2O催化分解性能的影响.研究表明,以K_2CO_3为沉淀剂制备的Co_3O_4催化剂具有优越的氧化还原性能.此外,较低结晶度有助于提高催化剂的催化性能,催化剂表面物种与其沉淀剂相关:丰富的表面Co物种促进催化活性,较多氧空位有利于催化剂表面的电子传递和氧气的脱附.以K_2CO_3为沉淀剂制备的Co_3O_4催化剂表现出最佳的N_2O催化分解活性,在450℃达到90%以上的转化率.  相似文献   

7.
采用溶胶-凝胶法(SG)制备了掺杂少量La或Ce的Pt/Al2O3贵金属催化剂和In2O3/Al2O3氧化物催化剂, 并考察了La或Ce对催化剂的比表面和晶相结构和丙烯在这些催化剂上选择性还原NO的活性. 结果表明, 掺杂少量的La或Ce, 可以改变催化剂的热稳定性, 富氧条件下丙烯选择性催化还原NO的反应中, La或Ce的掺杂对催化活性和催化活性温度窗口没有明显改善.  相似文献   

8.
CuO/γ—Al2O3上CO和NO吸附的红外光谱研究:Ⅱ.还原态   总被引:1,自引:0,他引:1  
田扬超  伏义路 《分子催化》1992,6(6):403-410
应用红外光谱技术研究了CO和NO及其混合气体在还原态CuO/γ-Al_2O_3上的吸附.XRD分析样品物相仅有Cu~0,但是,XPS和IR都证明样品表面上除Cu~0外,还有Cu~(2+)和Cu~+。CO以分子态的形式吸附在Cu~+和Cu~0上(低于173K,无NO存在时,CO可以吸附在Cu~(2+)上);NO以分子态吸附在Cu~(2+)上,在Cu~0上为离解吸附(173K以下,无CO存在时,NO可以吸附在Cu~+上)。CO吸附时,表面还生成HCO_3~-、CO_3~(2-)、HCOO~-,NO吸附时,除被氧化为NO3~-外,表面上还出现N_2O物种;高于室温时,CO和NO共吸附,表面上除生成HCO_3~-、CO_3~(2-)和N_2O外,还有NCO~-物种生成,讨沦了CO和NO反应的基本步骤。  相似文献   

9.
亚硝酰基配合物中存在着线型端基(三电子基)、弯曲型端基(单电子基)、桥式和面桥式不同的亚硝酰基配位方式,这些不同配位方式在催化研究领域中的应用具有无限广阔的前景。特殊的配位方式使中心原子出现16 e结构或20 e结构,在其它配合物中只有当配体解离或缔合时才拥有这样的电子结构,因而大部分亚硝酰基配合物均具有催化活性。其次配位亚硝酰基受中心原子活化使N≡O键容易断裂,亚硝酰基被还原生成羟胺或亚胺基;活化的亚硝酰基可以作为氧源催化转化汽车废气:2NO+2CO→N_2+2CO_2或2NO+CO→N_2O+CO_2以消除污染。我们曾在室温、常压下合成亚硝酰基配合物并  相似文献   

10.
氮氧化物(NO_x,主要包括NO和NO_2)是主要的大气污染物之一,造成酸雨,光化学烟雾和臭氧层破坏等环境问题,甚至直接危害人体健康.化石燃料燃烧和汽车尾气排放是NO_x的主要来源,严格控制火力发电厂,大型锅炉,汽车尾气等污染源中NO_x的排放刻不容缓.以NH_3为还原剂选择性催化还原NO_x(NH_3-SCR)是目前公认的最有效的NO_x脱除技术,然而在催化NO_x还原为N_2的过程中往往伴随着副产物N_2O的生成,降低了催化剂的选择性,造成温室气体效应和破坏臭氧层等环境问题.因此充分理解NH_3-SCR过程中N_2O的形成机理对于抑制N_2O的产生、提高催化剂的选择性十分重要.本文将高度分散的Pd纳米团簇负载在Ce O_2纳米棒上制成Pd/Ce O_2催化剂,结合NH_3-TPD, NO-TPD和原位傅里叶转换红外光谱等表征手段研究了无氧条件下该催化剂上利用NH_3催化还原NO过程中N_2O的产生路径.结果表明, N_2O的形成途径与反应温度和反应气体的浓度相关.当反应气体中NH_3含量大于化学计量比时,在反应温度低于200°C时,由NH_3活化产生的吸附态H·自由基与催化剂表面吸附的NO反应先生成中间产物HON,两个HON分子进一步反应生成N_2O;过量的吸附态的H·自由基也可以与HON反应生成N_2,所以低温下(200°C)随着反应气氛中NH_3的增加,解离生成的H·也随之增加,促进反应向着生成N_2的方向进行,从而抑制了N_2O的产生.随着反应温度增加, NH_3解离产生的H·被CeO_2表面的O捕获形成羟基,中间产物HON的生成被切断,从而阻断了N_2O的生成.同时由于体系中含有大量的NH_3,吸附态的NO会优先与活化态的NH_3物种反应生成N_2,阻碍了NO解离生成N_2O这一过程的发生,因此NH_3过量情况下在高温下观察不到N_2O的产生,可获得100%的N_2选择性.但是当反应气体中的NH_3含量不足时,即体系中含有过量的NO,当反应温度高于250°C, NO可在催化剂表面解离生成吸附态的N·自由基和O·自由基, N·自由基可进一步与吸附态的NO反应生成N_2O, NO的解离是N_2O生成的速控步,还原性吸附物种对O·自由基的捕捉将有利于N_2O的生成.当反应温度介于200–250°C, NH_3解离产生的H·自由基既可以与NO结合生成HON中间产物,又能被CeO_2表面的O捕获形成羟基,两个反应之间存在竞争,此时N_2O产生与反应气体浓度之间的关系不再呈单调变化.  相似文献   

11.
采用共沉淀法制备了一系列Cu-Zr-Ce-O复合氧化物催化剂,考察了ZrO2加入量、不同再生方法对催化剂CO选择性氧化反应性能的影响,并通过DSC-TPR、XRD和SEM手段对催化剂进行了表征。结果表明,添加ZrO2的Cu1Zr1Ce9Oδ催化剂在160 ℃~200 ℃,具有99%以上的CO转化率,并且催化剂的选择性相对较高。适量ZrO2的加入能够细化催化剂的颗粒,提高催化剂的热稳定性,改变催化剂的聚结方式。经氮气、氢气及氧气再生处理后的Cu1Zr1Ce9Oδ催化剂,催化活性有所不同,其中经氧气处理后的催化剂,表面吸附氧体积分数较高,活性恢复较好。  相似文献   

12.
制备了Cu/Ce(x)/Al2O3(X为Ce与Al的摩尔比)系列氧化催化剂,并考察了(Ag/Al2O3+Cu/Ce(x)/Al2O3)组合体系催化乙醇还原NO,以及氧化去除反应副产物(CO和未完全燃烧的碳氧化合物)的活性.在200~350℃温度区间,组合催化剂具有与Ag/Al2O3相似的NO,去除效率.随着Ce/Al比增加,氧化催化剂去除CO的活性逐渐提高.Cu/CeO2催化剂具有最好的氧化活性,但其对NOx的去除有较大影响.综合考虑NOx转化率以及CO和HC的去除效果,(Ag/Al2O3+Cu/Ce(0.15)/Al2O3)是最佳的催化剂组合体系.通过对此系列氧化催化剂的BET比表面积、XRD、H2-TPR以及XPS等表征结果的分析,发现Cu和Ce之间的相互作用是催化剂氧化CO能力提高的主要原因.  相似文献   

13.
用TPD-MS,XPS,ESR,脉冲反应技术和活性测定等研究了CuO-ZnO-Al_2O_3催化剂上CO_2的加氢行为。结果表明,CO_2加氢的反应动力学行为与CO加氢有明显不同,反应产物只有CH_3OH和CO,完全没有烃类产生,也没有出现结炭失活现象。反应时,CO_2先与OH作用生成HCO_3和CO_3,再进一步加氢生成HCOO和HCO等中间物种。HCOO有多种吸附状态,只有一部份HCOO能进一步加氢,而HCO则很容易加氢生成CH_3OH。还原过程中,各中间物种的吸附位不尽相同,进一步反应需要的H的状态可能也不同。CO_2,CO和CH_3OH可能通过中间物种HCOO相互转化。催化剂的活性和选择性与Cu(Ⅰ)和Zn(Ⅰ)的数量密切相关。  相似文献   

14.
在介质阻挡等离子体放电(DBD)辅助催化剂(6%CuO/15%TiO2/γ-Al2O3,6%CuO/5%CeO2/15%TiO2/γ-Al2O3)反应装置上,研究了4种不同反应条件下(NO+CH4,NO+CH4+O2,NO+CH4+NTP,NO+CH4+O2+NTP)NO和CH4反应,采用BET、XRD、H2-TPR和XPS等手段对催化剂进行了表征.结果表明在上述4种反应条件下,对于NO+CH4的反应,O2的存在有利于NO脱除,在等离子体条件下,O2的加入对NO的转化有所抑制;而等离子体的活化极大增强了NO的低温脱除活性.在等离子体存在条件下,6%CuO/5%CeO2/15%TiO2/γ-Al2O3(6Cu5Ce15TA)对NO的转化率都优于6%CuO/15%TiO2/γ-Al2O3(6Cu15TA).BET结果显示添加TiO2和CeO2于γ-Al2O3表面后,比表面积都有少量降低;而各载体负载6%CuO后比表面积也有所下降.XRD结果表明6Cu15TA和6Cu5Ce15TA催化剂由锐钛矿相TiO2组成,CuO在各催化剂表面呈现高度分散.H2-TPR数据和XPS实验结果显示负载CuO后,催化剂表面的铜物种由高度分散的CuO和嵌入到CeO2或TiO2晶格中Cu2+所组成.6Cu5Ce15TA表面含有较6Cu15TA多的Cu+,从而增强了NO的脱除活性.  相似文献   

15.
以柠檬酸为配合剂,用溶胶-凝胶法制备了一组不同组成的Co-Al复合氧化物(CoAl_2O_4、CoCo0.5Al1.5O4、CoCoAlO_4、CoCo_(1.5)Al_(0.5)O_4、Co_3O_4),用于催化分解N_2O.用N_2物理吸附、X射线衍射(XRD)、扫描电镜(SEM)、H2程序升温还原(H2-TPR)、X射线光电子能谱(XPS)等技术对催化剂进行了结构表征,考察了复合氧化物组成、母液pH值、配合剂用量等制备参数对催化剂活性的影响.结果表明:用Al取代Co_3O_4中部分Co制备Co-Al复合氧化物,提高了催化剂的比表面积和催化活性,其中组成为CoCo_(1.5)Al_(0.5)O_4、母液pH=2、柠檬酸/金属离子(摩尔比)为1的催化剂活性较高.在CoCo_(1.5)Al_(0.5)O_4表面浸渍K2CO3溶液制得K改性催化剂,弱化了钴-氧化学键,提高了催化活性.其中0.02K/CoCo1.5Al0.5O4催化剂在有氧有水气氛400℃连续反应50h,N_2O转化率达97.1%.  相似文献   

16.
用不同的预处理气氛制备了CeO2/γ-Al2O3载体以调节表面Ce的价态,并以Cu(CH3COO)2为前驱体制备了CuCeAl催化剂。XRD和H2-TPR的结果表明在还原气氛下处理的CeO2/γ-Al2O3载体具有更多的活性氧原子,因此相应的CuCeAl催化剂表面有更多分散态的Cu2+/Cu+物种。NO+CO反应的结果表明分散态的Cu2+/Cu+是NO转化的活性物质,而Cu0在低温下具有较好的N2选择性。因此,同时含有分散态Cu2+/Cu+和少量晶相Cu0的催化剂具有最好的催化性能。  相似文献   

17.
以堇青石蜂窝陶瓷为载体,CuxCe1-xO2-x/SBA-15为催化活性组分,制备了一系列10%~60%Cu0.5Ce0.5O1.5/SBA-15/堇青石和50%CuxCe1-xO2-x/SBA-15/堇青石(x=0~1)整体式催化剂,采用低温氮吸附-脱附、XRD、XPS和H2-TPR对催化剂进行了表征,在微型固定床反应器中评价了催化剂的CO催化氧化活性。结果表明:整体式催化剂仍然保持SBA-15的介孔结构,催化剂中除了堇青石的物相外,还有CuO和CeO2物相,催化剂表面的Cu以Cu2+和Cu+两种状态存在,Ce以Ce4+状态存在,催化剂表面的氧化还原性能与Cu0.5Ce0.5O1.5的含量和Cu、Ce的比例有一定的关系,50%Cu0.5Ce0.5O1.5/SBA-15/堇青石催化剂具有最好催化活性,CO可以在140℃完全转化。  相似文献   

18.
近年来,研究者们开发了自组装合成介孔氧化铝的方法,并以介孔氧化铝为载体负载金属氧化物,还尝试合成介孔MO_x-Al_2O_3复合氧化物.但以介孔MO_x-Al_2O_3复合氧化物为载体负载金属氧化物,并将这类材料用于催化中的例子相对较少.本工作以非离子型三嵌段共聚物(P123)为模板剂,异丙醇铝为氧化铝前驱物,采用一锅法快速制备了有序介孔Al_2O_3(MA)及一系列MO_x-Al_2O_3(M=Mn,Fe,Co,Ni,Cu,Ba)材料,并以这些材料为载体采用浸渍法制备了Rh/MA和Rh/M-MA催化剂.采用N_2吸附-脱附、X射线粉末衍射、透射电镜、X射线光电子能谱及电感偶合等离子体发射光谱等对催化剂结构和性质进行了表征,考察了催化剂对CO氧化和N_2O分解的催化活性和稳定性.结果表明,一锅法制备的各催化剂均有大的比表面积、大的孔容和均一的孔径.Rh/Mn-MA和Rh/Fe-MA中掺杂金属氧化物分别为MnO_2和Fe_2O_3,在Rh/Co-MA和Rh/Ni-MA上,Co和Ni分别与介孔氧化铝形成了NiAl_2O_4尖晶石结构;Rh/Cu-MA上还有CuO和少量Cu~+;对于Rh/Ba-MA催化剂,其载体的介孔有序性被破坏并有BaCO_3生成.在所有催化剂上,负载的Rh_2O_3颗粒高度分散,其颗粒尺寸分布在1 nm左右.对于CO氧化,催化剂的T_(50)(CO转化率到达到50%的温度)活性顺序为:Rh/Mn-MA(122℃)Rh/Fe-MA(130℃)≈Rh/Cu-MA(131℃)Rh/Co-MA(136℃)Rh/Ni-MA(156℃)Rh/MA(161℃)Rh/Ba-MA(171℃).大多数载体在200℃以下没有活性.对于N_2O分解,催化剂的T_(50)(N_2O转化率到达到50%的温度)活性顺序为:Rh/Co-MA(283℃)Rh/Ni-MA(287℃)≈Rh/Fe-MA(290℃)≈Rh/Ba-MA(292℃)Rh/MA(301℃)Rh/Cu-MA(314℃)Rh/Mn-MA(321℃).这些载体在400℃以下都没有活性.实验证明,通过掺杂的方法可以调变介孔Al_2O_3的物理化学性质,负载Rh_2O_3后,催化性能进一步被调变,虽然本文仅选取CO氧化和N_2O分解作为探针反应来比较这一类介孔氧化物材料的催化活性,考虑到Rh_2O_3和Al_2O_3在催化中的广泛使用,我们认为这些催化剂有可能用在其他反应中.  相似文献   

19.
在工业锅炉烟气处理领域,由于锅炉容量低,烟气温度往往无法满足传统选择性催化还原(SCR)所需温度窗口.工业锅炉烟气成分的复杂性也给氮氧化物治理带来了严峻考验.臭氧深度氧化NO结合湿法洗涤同时脱硫脱硝技术具有独特的应用优势.传统臭氧氧化技术中,NO被臭氧氧化为NO2,进而在脱硫塔中实现一体化脱硫脱硝.但由于NO2溶解度相对较低,需要在脱硫浆液中加入添加剂提高脱硝效率,造成运行成本增加.NO经臭氧深度氧化后,NO2进一步转化为溶解度高的N2O5,传统脱硫石膏浆液即可实现高效吸收N2O5,从而有效提高氮氧化物吸收效率.但由于N2O5生成反应速率低,深度氧化存在臭氧投入量大、反应时间长及臭氧残留多的缺点.臭氧耦合催化剂深度氧化NO可有效解决以上问题.首先,本文采用溶胶-凝胶法合成一系列单金属氧化物(Mn,Co,Ce,Fe,Cu,Cr)作为臭氧深度氧化NO的催化剂.结果发现锰氧化物表现出最高的催化活性,在70oC下,O3/NO摩尔比为2.0时经过0.12 s的反应时间催化剂即可实现80%以上的转化效率.但根据N2O5生成的总包反应(2NO+3O3=N2O5+3O2)可以看出,O3/NO摩尔比为1.5时即可实现N2O5的完全转化.由于催化臭氧氧化反应温度较低,中间产物在催化剂表面聚集,占据大量活性位,进而导致无法实现1.5摩尔比的高效转化.通过采用球形氧化铝作为载体,避免粉末状催化剂紧凑型布置,增加换热面积,可有效降低催化剂表面中间产物聚集;同时延长了气体与催化剂的接触时间,提高反应效率.在球形氧化铝载体上负载锰基双金属氧化物(Ce-Mn,Fe-M,Cr-Mn,Cu-Mn和Co-Mn),在初始NO浓度为410 mg/m3,反应温度100oC,O3/NO摩尔比1.5,催化反应时间0.12 s的工况下,催化剂最终实现95%(Fe-Mn)和88%(Ce-Mn)的转化效率,剩余NO和NO2的浓度分别低于20 mg/m3(Fe-Mn)和50 mg/m3(Ce-Mn),臭氧残留浓度低于25 mg/m3.同负载单一锰氧化物(83%转化率)相比,双金属氧化物进一步提高了N2O5生成效率.因此,臭氧耦合催化剂深度氧化NO结合湿法吸收在工业锅炉超低排放(NOx<50 mg/m3)领域具有广泛应用前景.通过XRD、氮气吸附、H2-TPR和XPS等手段研究了催化剂的晶体结构、孔结构参数、氧化还原性能和表面原子价态.催化臭氧深度氧化NO主要与催化剂对臭氧的分解性能和对NO的氧化性能有关.较大的比表面积和孔容有利于催化剂的吸附.氧空位有利于臭氧的吸附和分解.Mn4+和Mn3+的均衡分布既有利于NO的吸附氧化又有利于臭氧的吸附分解,最终提高了N2O5生成效率.  相似文献   

20.
CO催化还原NO是发生在汽车尾气净化催化剂中的一个重要化学反应.CeO_2容易发生氧化还原反应CeO_2?CeO_2-x+(x/2)O_2而具有氧储存/释放作用,可以有效地促进CO氧化,因而CeO_2作为储氧材料和催化助剂被广泛应用于汽车催化剂中.在过渡金属元素中,铑对NO的解离活性最高,是目前汽车三效催化剂中最为重要的还原性活性组分.目前,有关Rh-CeO_2基催化剂表面CO还原NO的文献仅关注催化反应活性和N_2O选择性,对CO还原NO反应机理的理解还不够深入准确--,无法为轻型汽油车NH_3排放控制提供正确有用的理论基础.NH_3排放至大气中会以NH_4+形式与SO_24和NO_3离子结合,导致二次颗粒物污染,因此,研究CO还原NO反应中NH_3生成机理对轻型汽油车NH_3排放控制具有非常重要的理论意义.我们研究组强调了CO催化还原NO反应的表面羟基介导NH_3生成问题,并通过原位漫反射傅里叶变换红外光谱(in-situ DRIFTS),傅里叶变换红外光谱(FT-IR),程序升温还原/氧化(TPR/TPO)等现代分析表征技术深入研究了CO还原NO反应机理,并首次提出了催化剂表面"羟基脱氢"反应的NH_3生成机理.研究发现,Rh-CeO_2催化剂表面CO还原NO反应的NH_3选择性最高可达9.7%,其反应表观活化能仅为36 kJ/mol,in-situ DRIFTS,FT-IR和NO-TPO测试结果表明,NH_3的生成可归因于催化剂表面"羟基脱氢"反应,即CO与催化剂表面端位羟基和桥式羟基发生"水煤气转化"反应生成H_2,反应产生的H_2还原NO生成NH_3;CeO_2中非骨架铈双羟基化形成的类氢氧化铈物种则会直接与NO发生脱氢反应生成NH_3,但需要更高的反应温度.值得注意的是,当反应气中额外通入5%水蒸气时,其反应表观活化能提高了21 kJ/mol(同比增加58.3%),更重要的是NH_3选择性明显提高,最高可达25.3%(同比增加160.8%),FT-IR测试结果表明,这是由于水蒸气作用促使催化剂表面羟基化,表面活性氢源得以不断补充.这从动力学角度促进了端位羟基和桥式羟基的"水煤气转化"反应而提高NH_3选择性.同时,对比NO/H_2,CO/NO和CO/NO/H_2O反应的NH_3生成浓度,我们还发现,H_2O分子与NO的竞争吸附会抑制未解离吸附的NH_3进一步还原NO,减少反应生成NH_3的消耗,促使更多生成的NH_3从催化剂表面脱附至气相中,这也是水蒸气导致NH_3选择性明显增加的重要原因.以上结果清晰地表明了催化剂表面"羟基脱氢"作用和水蒸气分子与NO的竞争吸附行为对CO还原NO反应中NH_3生成的重要影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号