首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonisothermal Blasius problem for a gas suspension is considered on the basis of the equations of a quasiequilibrium two-phase laminar boundary layer [1–3]. Approximate analytical expressions are obtained for the friction and heat transfer coefficients and their region of applicability is estimated; the Reynolds analogy between friction and convective heat transfer processes [4] is extended to the case of a dusty quasiequilibrium laminar boundary layer. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 160–162, November–December, 1986.  相似文献   

2.
The flow characteristics of both confined and unconfined air jets, impinging normally onto a flat plate have been experimentally investigated. The mean and turbulence velocities, and surface pressures were measured for Reynolds numbers ranging from 30,000 to 50,000 and the nozzle-to-plate spacings in range of 0.2–6. Smoke-wire technique is used to visualize the flow behavior. The effects of Reynolds number, nozzle-to-plate spacing and flow confinement on the flow structure are reported. In the case of confined jet, subatmospheric regions occur on both impingement and confinement surfaces at nozzle-to-plate spacings up to 2 for all Reynolds numbers in consideration and they lie up to nearly the same radial location at both surfaces. However, there is no evidence of the subatmospheric region in unconfined jet. It is concluded that there exists a linkage among the subatmospheric region, turbulence intensity and the peaks in heat transfer coefficients for low spacings in impinging jets.  相似文献   

3.
In the present case, the conjugate heat transfer involving a turbulent plane offset jet is considered. The bottom wall of the solid block is maintained at an isothermal temperature higher than the jet inlet temperature. The parameters considered are the offset ratio (OR), the conductivity ratio (K), the solid slab thickness (S) and the Prandtl number (Pr). The Reynolds number considered is 15,000 because the flow becomes fully turbulent and then it becomes independent of the Reynolds number. The ranges of parameters considered are: OR = 3, 7 and 11, K = 1–1,000, S = 1–10 and Pr = 0.01–100. High Reynolds number two-equation model (k–ε) has been used for turbulence modeling. Results for the solid–fluid interface temperature, local Nusselt number, local heat flux, average Nusselt number and average heat transfer have been presented and discussed.  相似文献   

4.
The effect of rough surface topography on heat and momentum transfer is studied by direct numerical simulations of turbulent heat transfer over uniformly heated three-dimensional irregular rough surfaces, where the effective slope and skewness values are systematically varied while maintaining a fixed root-mean-square roughness. The friction Reynolds number is fixed at 450, and the temperature is treated as a passive scalar with a Prandtl number of unity. Both the skin friction coefficient and Stanton number are enhanced by the wall roughness. However, the Reynolds analogy factor for the rough surface is lower than that for the smooth surface. The semi-analytical expression for the Reynolds analogy factor suggests that the Reynolds analogy factor is related to the skin friction coefficient and the difference between the temperature and velocity roughness functions, and the Reynolds analogy factor for the present rough surfaces is found to be predicted solely based on the equivalent sand-grain roughness. This suggests that the relationship between the Reynolds analogy factor and the equivalent sand-grain roughness is not affected by the effective slope and skewness values. Analysis of the heat and momentum transfer mechanisms based on the spatial- and time-averaged equations suggests that two factors decrease the Reynolds analogy factor. One is the increased effective Prandtl number within the rough surface in which the momentum diffusivity due to the combined effects of turbulence and dispersion is larger than the corresponding thermal diffusivity. The other is the significant increase in the pressure drag force term above the mean roughness height.  相似文献   

5.
A systematic analysis is performed for the Reynolds analogy breakdown at stagnation-region flow and heat transfer in the presence of inflow disturbances. The Reynolds analogy breakdown between momentum and energy transfers in a stagnation region is scrutinized by varying the Reynolds number (5000≤Re≤20000), the amplitude (0.00075≤A≤0.003) and the length scale (λ/δ=10.6). A spanwise sinusoidal variation is superimposed on the velocity component normal to the wall. Self-similarity solutions are obtained with trigonometric series expansions. The Reynolds analogy criterion demonstrates that the rate of change of skin friction is different from that of wall heat transfer. Different evolutions of the rates of skin friction and wall heat transfer are due to the difference between 〈s'v'〉 and 〈v'T'〉. An in-depth analysis on 〈s'v'〉 and 〈 v'T'〉 is performed by analysis using disturbance correlations based on the fluctuating velocity transport equations in vorticity form. It is found that the pressure fluctuations, the wall blocking and the Lamb vectors are responsible for the breakdown of the Reynolds analogy. A direct comparison is made between momentum and energy balances associated with the three responsible mechanisms. A common finding is that their profiles are changed significantly at a location where the evolution of the streamwise vortex is strong. Received 12 May 2000 and accepted 6 March 2001  相似文献   

6.
Three-dimensional turbulent forced convective heat transfer and flow characteristics, and the non-dimensional entropy generation number in a helical coiled tube subjected to uniform wall temperature are simulated using the k–ε standard turbulence model. A finite volume method is employed to solve the governing equations. The effects of Reynolds number, curvature ratio, and coil pitch on the average friction factor and Nusselt number are discussed. The results presented in this paper cover a Reynolds number range of 2 × 104 to 6 × 104, a pitch range of 0.1–0.2 and a curvature ratio range of 0.1–0.3. The results show that the coil pitch, curvature ratio and Reynolds number have different effects on the average friction factor and Nusselt number at different cross-sections. In addition, the flow and heat transfer characteristics in a helical coiled tube with a larger curvature ratio for turbulent flow are different from that of smaller curvature ratio for laminar and turbulent flow in certain ways. Some new features that are not obtained in previous researches are revealed. Moreover, the effects of Reynolds number, curvature ratio, and coil pitch on the non-dimensional entropy generation number of turbulent forced convection in a helical coiled tube are also discussed.  相似文献   

7.
The flow and heat transfer in an inclined and horizontal rectangular duct with a heated plate longitudinally mounted in the middle of cross section was experimentally investigated. The heated plate and rectangular duct were both made of highly conductive materials, and the heated plate was subjected to a uniform heat flux. The heat transfer processes through the test section were under various operating conditions: Pr ≈ 0.7, inclination angle ϕ = −60° to +60°, Reynolds number Re = 334–1,911, Grashof number Gr = 5.26 × 102–5.78 × 106. The experimental results showed that the average Nusselt number in the entrance region was 1.6–2 times as large as that in the fully developed region. The average Nusselt numbers and pressure drops increased with the Reynolds number. The average Nusselt numbers and pressure drops decreased with an increase in the inclination angle from −60° to +60° when the Reynolds number was less than 1,500. But when the Reynolds number increased to over about 1,800, the heat transfer coefficients and pressure drops were independent of inclination angles.  相似文献   

8.
The laws of heat transfer associated with the interaction of underexpanded supersonic gas jets and obstacles or blunt bodies have been investigated, for example, in [1–3]. Similar problems of nonuniform flow occur when bodies move in the wake behind other bodies; however, in this case the laws of heat transfer have so far received little attention [4–8]. It has been established that for a certain Reynolds number and flow nonuniformity parameters a zone of reverse-circulatory flow develops near the front of the blunt body. However, the conditions of transition to separated flow have not been determined. This paper presents a self-similar solution of the equations of the viscous shock layer near the stagnation line in supersonic flow past an axisymmetric blunt body located behind another body. On the basis of this solution a separationless flow criterion is proposed. The effect of the nonuniformity and the Reynolds number on the shock standoff distance, the convective heat flux and the friction drag of the blunt body is investigated. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 120–125, November–December, 1986. In conclusion the authors wish to thank I. G. Eremeitsev for useful suggestions and G. A. Tirskii for discussing their work.  相似文献   

9.
A numerical study is performed to analyze steady laminar forced convection in a channel in which discrete heat sources covered with porous material are placed on the bottom wall. Hydrodynamic and heat transfer results are reported. The flow in the porous medium is modeled using the Darcy–Brinkman–Forchheimer model. A computer program based on control volume method with appropriate averaging for diffusion coefficient is developed to solve the coupling between solid, fluid, and porous region. The effects of parameters such as Reynolds number, Prandtl number, inertia coefficient, and thermal conductivity ratio are considered. The results reveal that the porous cover with high thermal conductivity enhances the heat transfer from the solid blocks significantly and decreases the maximum temperature on the heated solid blocks. The mean Nusselt number increases with increase of Reynolds number and Prandtl number, and decrease of inertia coefficient. The pressure drop along the channel increases rapidly with the increase of Reynolds number.  相似文献   

10.
The flow and heat transfer characteristics of an unconfined air jet that is impinged normally onto a heated flat plate have been experimentally investigated for high Reynolds numbers ranging from 30,000 to 70,000 and a nozzle-to-plate spacing range of 1–10. The mean and turbulence velocities by using hot-wire anemometry and impingement surface pressures with pressure transducer are measured. Surface temperature measurements are made by means of an infrared thermal imaging technique. The effects of Reynolds number and nozzle-to-plate spacing on the flow structure and heat transfer characteristics are described and compared with similar experiments. It was seen that the locations of the second peaks in Nusselt number distributions slightly vary with Reynolds number and nozzle-to-plate spacing. The peaks in distributions of Nusselt numbers and radial turbulence intensity are compatible for spacings up to 3. The stagnation Nusselt number was correlated for the jet Reynolds number and the nozzle-to-plate spacing as Nu stRe 0.69(H/D)0.019.  相似文献   

11.
This paper describes heat and mass transfer characteristics of organic sorbent coated on heat transfer surface of a fin-tube heat exchanger. The experiments in which the moist air was passed into the heat exchanger coated with sorption material were conducted under various conditions of air flow rate (0.5–1.0 m/s) and the temperature of brine (14–20°C) that was the heat transfer fluid to cool the air flow in the dehumidifying process. It is found that the sorption rate of vapor is affected by the air flow rate and the brine temperature. Meanwhile, the attempt of clarifying the sorption mechanism is also conducted. Finally the average mass transfer coefficient of the organic sorbent coated on heat transfer surface of a fin-tube heat exchanger is non-dimensionalzed as a function of Reynolds number and non-dimensional temperature, and it is found that the effect of non-dimensional temperature on them is larger than Reynolds number .  相似文献   

12.
Heat transfer in a jet propagating in a cocurrent flow has been studied over wide ranges of the injection ratio (m=Us/U0<1 and m>1) and flow turbulence (Tu0=0.2–25%). It is shown experimentally that for m<1, a 1% increase in turbulence leads to a 1% increase in heat transfer, and the wall adiabatic temperature and the relative heat-transfer function should be taken into account in heat-transfer calculations. For m>1, the flow turbulence does not affect the heat transfer and the heat production can be calculated using the laws typical of jet flows. Kutateladze Institute of Thermal Physics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 3, pp. 119–125, May–June, 1998.  相似文献   

13.
The mean and turbulent structures of turbulent swirling flow in a heated annulus have been measured. Both forced and free vortex swirling flows were generated, and the outer wall of the test section was heated uniformly. The maximum swirl number was 1.39, Reynolds numbers were up to 200000, and heat input was 10.5 kW. Mean and turbulent velocity components, air and wall temperatures, and wall static pressures were all measured. Hot-film techniques were developed to measure turbulence. From these parameters, the flow and temperature fields, pressure distribution, and heat transfer coefficients were determined. The mechanisms of heat transfer were identified.  相似文献   

14.
A modified model of turbulence is proposed to describe the processes of vertical transport in inhomogeneous turbulent flows. This model includes algebraic relations for the Reynolds stresses and turbulent-exchange coefficients. Using this model, the growth of the depth of a mixed layer under the action of the wind load in neutral and stable stratified near-wall flows has been predicted. The calculation results for a stable stratified flow that were obtained using the modified and standard two-parametric models of turbulence are compared with experimental data. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 6, pp. 57–64, November–December, 1998.  相似文献   

15.
For verifying the method of calculating the boundary layer in liquid rocket engine (LRE) nozzles developed by the authors on the basis of a differential three-parameter turbulence model, the boundary layer on a plate in a zero-gradient flow is calculated. Over a wide range of variation of the free-stream Mach number, the temperature factor, and the Reynolds number, based on the momentum thickness of the boundary layer, the calculation agrees satisfactorily with the known experimental data, with respect to both integral and local flow and heat transfer characteristics. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 64–78, November–December, 1998. The work received financial support from the Russian Foundation for Basic Research (project No.96-012-00260).  相似文献   

16.
A detailed numerical study is carried out to investigate fluid flow and heat transfer characteristics in a channel with heated V corrugated upper and lower plates. The parameters studied include the Reynolds number (Re = 2,000–5,500), angles of V corrugated plates (θ = 20°, 40°, 60°), and constant heat fluxs (q″ = 580, 830, 1,090 W/m2). Numerical results have been validated using the experimented data reported by Naphon, and a good agreement has been found. The angles of V corrugated plates (θ) and the Reynolds number are demonstrated to significantly affect the fluid flow and the heat transfer rate. Increasing the angles of V corrugated plates can make the heat transfer performance become better. The increasing Reynolds number leads to a more complex fluid flow and heat transfer rate. The numerical calculations with a non-equilibrium wall function have a better accuracy than with a standard wall function for solving high Reynolds numbers or complex flow problems.  相似文献   

17.
An experimental study was conducted of incompressible, moderate Reynolds number flow of air over heated rectangular blocks in a two-dimensional, horizontal channel. Holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in self- sustained oscillatory flow. Experiments were conducted in the laminar, transitional and turbulent flow regimes for Reynolds numbers in the range from Re = 520 to Re = 6600. Interferometric measurements were obtained in the thermally and fluiddynamically periodically fully developed flow region on the ninth heated block. Flow oscillations were first observed between Re = 1054 and Re = 1318. The period of oscillations, wavelength and propagation speed of the Tollmien–Schlichting waves in the main channel were measured at two characteristic flow velocities, Re = 1580 and Re = 2370. For these Reynolds numbers it was observed that two to three waves span one geometric periodicity length. At Re = 1580 the dominant oscillation frequency was found to be around 26 Hz and at Re = 2370 the frequency distribution formed a band around 125 Hz. Results regarding heat transfer and pressure drop are presented as a function of the Reynolds number, in terms of the block-average Nusselt number and the local Nusselt number as well as the friction factor. Measurements of the local Nusselt number together with visual observations indicate that the lateral mixing caused by flow instabilities is most pronounced along the upstream vertical wall of the heated block in the groove region, and it is accompanied by high heat transfer coefficients. At Reynolds numbers beyond the onset of oscillations the heat transfer in the grooved channel exceeds the performance of the reference geometry, the asymmetrically heated parallel plate channel. Received on 26 April 2000  相似文献   

18.
Local condensation heat transfer coefficients and interfacial shear stresses have been measured for countercurrent stratified flow of steam and subcooled water in rectangular channels over a wide range of inclination angles (4–87°) at two aspect ratios. Dimensionless correlations for the interfacial friction factor have been developed that show that it is a function of the liquid Reynolds number only. Empirical correlations of the heat transfer coefficient, based upon the bulk flow properties, have also been set up for the whole body of data encompassing the different inclination angles and aspect ratios. These indicate that the Froude number as a dimensionless gas velocity is a better correlating parameter than the gas Reynolds number. As an alternative approach, a simple dimensionless relationship for the beat transfer coefficient was obtained by analogy between heat and momentum transfer through the interface. Finally, a turbulence-centered model has been modified by using measured interfacial parameters for the turbulent velocity and length scales, resulting in good agreement with the data.  相似文献   

19.
 An experimental and numerical investigation of heat transfer and fluid flow was conducted for corrugated-undulated plate heat exchanger configurations under transitional and weakly turbulent conditions. For a given geometry of the corrugated plates the geometrical characteristics of the undulated plates, the angle formed by the latter with the main flow direction, and the Reynolds number were made to vary. Distributions of the local heat transfer coefficient were obtained by using liquid-crystal thermography, and surface-averaged values were computed; friction coefficients were measured by wall pressure tappings. Overall heat transfer and pressure drop correlations were derived. Three-dimensional numerical simulations were conducted by a finite-volume method using a low-Reynolds number k–ɛ model under the assumption of fully developed flow. Computed flow fields provided otherwise inaccessible information on the flow patterns and the mechanisms of heat transfer enhancement. Received on 5 February 1999  相似文献   

20.
The Lighthill acoustic analogy combined with Reynolds-averaged Navier–Stokes flow computations are used to investigate the ability of existing technology to predict the tonal noise generated by vortex shedding from a circular cylinder for a range of Reynolds numbers (100 < Re < 5 million). Computed mean drag, mean coefficient of pressure, Strouhal number, and fluctuating lift are compared with experiment. Two-dimensional calculations produce a Reynolds number trend similar to experiment but incorrectly predict many of the flow quantities. Different turbulence models give inconsistent results in the critical Reynolds number range (Re≈ 100000). The computed flow field is used as input for noise prediction. Two-dimensional inputs overpredict both noise amplitude and frequency; however, if an appropriate correlation length is used, predicted noise amplitudes agree with experiment. Noise levels and frequency content agree much better with experiment when three-dimensional flow computations are used as input data. Received 5 May 1998 and accepted 28 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号