首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the Schrödinger map equation \({u_t = u \times \triangle u \, {\rm in} \, \mathbb{R}^{2+1}}\) , with values in S 2, we prove for any \({\nu > 1}\) the existence of equivariant finite time blow up solutions of the form \({u(x, t) = \phi(\lambda(t) x) + \zeta(x, t)}\) , where \({\phi}\) is a lowest energy steady state, \({\lambda(t) = t^{-1/2-\nu}}\) and \({\zeta(t)}\) is arbitrary small in \({\dot H^1 \cap \dot H^2}\) .  相似文献   

2.
A new technique is proposed for the solution of the Riemann–Hilbert problem with the Chebotarev–Khrapkov matrix coefficient \({G(t) = \alpha_{1}(t)I + \alpha_{2}(t)Q(t)}\) , \({\alpha_{1}(t), \alpha_{2}(t) \in H(L)}\) , I = diag{1, 1}, Q(t) is a \({2\times2}\) zero-trace polynomial matrix. This problem has numerous applications in elasticity and diffraction theory. The main feature of the method is the removal of essential singularities of the solution to the associated homogeneous scalar Riemann–Hilbert problem on the hyperelliptic surface of an algebraic function by means of the Baker–Akhiezer function. The consequent application of this function for the derivation of the general solution to the vector Riemann–Hilbert problem requires the finding of the \({\rho}\) zeros of the Baker–Akhiezer function ( \({\rho}\) is the genus of the surface). These zeros are recovered through the solution to the associated Jacobi problem of inversion of abelian integrals or, equivalently, the determination of the zeros of the associated degree- \({\rho}\) polynomial and solution of a certain linear algebraic system of \({\rho}\) equations.  相似文献   

3.
We study quartic matrix models with partition function \({\mathcal{Z}[E, J] = \int dM}\) exp(trace \({(JM - EM^{2} - \frac{\lambda}{4} M^4)}\) ). The integral is over the space of Hermitean \({\mathcal{N} \times \mathcal{N}}\) -matrices, the external matrix E encodes the dynamics, \({\lambda > 0}\) is a scalar coupling constant and the matrix J is used to generate correlation functions. For E not a multiple of the identity matrix, we prove a universal algebraic recursion formula which gives all higher correlation functions in terms of the 2-point function and the distinct eigenvalues of E. The 2-point function itself satisfies a closed non-linear equation which must be solved case by case for given E. These results imply that if the 2-point function of a quartic matrix model is renormalisable by mass and wavefunction renormalisation, then the entire model is renormalisable and has vanishing β-function. As the main application we prove that Euclidean \({\phi^4}\) -quantum field theory on four-dimensional Moyal space with harmonic propagation, taken at its self-duality point and in the infinite volume limit, is exactly solvable and non-trivial. This model is a quartic matrix model, where E has for \({\mathcal{N} \to \infty}\) the same spectrum as the Laplace operator in four dimensions. Using the theory of singular integral equations of Carleman type we compute (for \({\mathcal{N} \to \infty}\) and after renormalisation of \({E, \lambda}\) ) the free energy density (1/volume) log \({(\mathcal{Z}[E, J]/\mathcal{Z}[E, 0])}\) exactly in terms of the solution of a non-linear integral equation. Existence of a solution is proved via the Schauder fixed point theorem. The derivation of the non-linear integral equation relies on an assumption which in subsequent work is verified for coupling constants \({\lambda \leq 0}\) .  相似文献   

4.
The large isospin symmetry breaking found in the X(3872) decay is investigated by looking into the transfer strength from the \({{c}\bar{c}}\) quarkonium to the two-meson states: \({c\bar{c} \rightarrow D^{0}\overline{D}^{*0}, D^{+} D^{*-} , J /\psi\omega, {\rm and} \, J /\psi\rho}\) . The widths of the \({\rho}\) and \({\omega}\) mesons are taken into account in the calculation. It is found that very narrow \({J /\psi\omega}\) and \({J /\psi\rho}\) peaks appear at the \({D^{0}\overline{D}^{*0}}\) threshold. These narrow peaks appear provided that the strength of the \({D^{0}\overline{D}^{*0}}\) component is large around the threshold. The large width of the \({\rho}\) meson enhances the isospin-one component in the transfer strength considerably, which reduces the ratio \({{\rm Br}(X \rightarrow J /\psi\omega)/{\rm Br}(X \rightarrow J /\psi\rho)}\) down to 2.5.  相似文献   

5.
We prove the following theorem on bounded operators in quantum field theory: if \({\|[B,B^*(x)]\|\leqslant{\rm const}D(x)}\) , then \({\|B^k_\pm(\nu)G(P^0)\|^2\leqslant{\rm const}\int D(x - y){\rm d}|\nu|(x){\rm d}|\nu|(y)}\) , where D(x) is a function weakly decaying in spacelike directions, \({B^k_\pm}\) are creation/annihilation parts of an appropriate time derivative of B, G is any positive, bounded, non-increasing function in \({L^2(\mathbb{R})}\) , and \({\nu}\) is any finite complex Borel measure; creation/annihilation operators may be also replaced by \({B^k_t}\) with \({\check{B^k_t}(p)=|p|^k\check{B}(p)}\) . We also use the notion of energy-momentum scaling degree of B with respect to a submanifold (Steinmann-type, but in momentum space, and applied to the norm of an operator). These two tools are applied to the analysis of singularities of \({\check{B}(p)G(P^0)}\) . We prove, among others, the following statement (modulo some more specific assumptions): outside p = 0 the only allowed contributions to this functional which are concentrated on a submanifold (including the trivial one—a single point) are Dirac measures on hypersurfaces (if the decay of D is not to slow).  相似文献   

6.
The space \({\mathcal{D}_\Gamma^\prime}\) of distributions having their wavefront sets in a closed cone \({\Gamma}\) has become important in physics because of its role in the formulation of quantum field theory in curved spacetime. In this paper, the topological and bornological properties of \({\mathcal{D}_\Gamma^\prime}\) and its dual \({\mathcal{E}_\Lambda^\prime}\) are investigated. It is found that \({\mathcal{D}_\Gamma^\prime}\) is a nuclear, semi-reflexive and semi-Montel complete normal space of distributions. Its strong dual \({\mathcal{E}_\Lambda^\prime}\) is a nuclear, barrelled and (ultra)bornological normal space of distributions which, however, is not even sequentially complete. Concrete rules are given to determine whether a distribution belongs to \({\mathcal{D}_\Gamma^\prime}\) , whether a sequence converges in \({\mathcal{D}_\Gamma^\prime}\) and whether a set of distributions is bounded in \({\mathcal{D}_\Gamma^\prime}\) .  相似文献   

7.
8.
In the present paper, we study the following scaled nonlinear Schrödinger equation (NLS) in one space dimension: $$ i\frac{\rm d}{{\rm d}t}\psi^{\varepsilon}(t)=-\Delta\psi^{\varepsilon}(t) +\frac{1}{\varepsilon}V\left(\frac{x}{\varepsilon} \right)|\psi^{\varepsilon}(t)|^{2\mu}\psi^{\varepsilon}(t)\quad \varepsilon > 0\,\quad V\in L^1(\mathbb{R},(1+|x|){\rm d}x) \cap L^\infty(\mathbb{R}).$$ This equation represents a nonlinear Schrödinger equation with a spatially concentrated nonlinearity. We show that in the limit \({\varepsilon\to 0}\) the weak (integral) dynamics converges in \({H^1(\mathbb{R})}\) to the weak dynamics of the NLS with point-concentrated nonlinearity: $$ i\frac{{\rm d}}{{\rm d}t} \psi(t) =H_{\alpha} \psi(t) .$$ where H α is the Laplacian with the nonlinear boundary condition at the origin \({\psi'(t,0+)-\psi'(t,0-)=\alpha|\psi(t,0)|^{2\mu}\psi(t,0)}\) and \({\alpha=\int_{\mathbb{R}}V{\rm d}x}\) . The convergence occurs for every \({\mu\in \mathbb{R}^+}\) if V ≥  0 and for every  \({\mu\in (0,1)}\) otherwise. The same result holds true for a nonlinearity with an arbitrary number N of concentration points.  相似文献   

9.
The parity-violating Lagrangian of the weak nucleon-nucleon (NN) interaction in the pionless effective field theory (EFT( \({/\!\!\!\pi}\) )) approach contains five independent unknown low-energy coupling constants (LECs). The photon asymmetry with respect to neutron polarization in \({np\rightarrow d\gamma A_\gamma^{np}}\) , the circular polarization of outgoing photon in \({np\rightarrow d\gamma P_\gamma^{np}}\) , the neutron spin rotation in hydrogen \({\frac{1}{\rho}\frac{d\phi^{np}}{dl}}\) , the neutron spin rotation in deuterium \({\frac{1}{\rho}\frac{d\phi^{nd}}{dl}}\) and the circular polarization of γ-emission in \({nd\rightarrow}\) 3 \({P^{nd}_\gamma}\) are the parity-violating observables which have been recently calculated in terms of parity-violating LECs in the EFT( \({/\!\!\!\pi}\) ) framework. We obtain the LECs by matching the parity-violating observables to the Desplanques, Donoghue, and Holstein (DDH) best value estimates. Then, we evaluate photon asymmetry with respect to the neutron polarization \({a^{nd}_\gamma}\) and the photon asymmetry in relation to deuteron polarization \({A^{nd}_\gamma}\) in \({nd\rightarrow}\) 3 process. We finally compare our EFT( \({/\!\!\!\pi}\) ) photon asymmetries results with the experimental values and the previous calculations based on the DDH model.  相似文献   

10.
We consider a smooth Riemannian metric tensor g on \({\mathbb{R}^n}\) and study the stochastic wave equation for the Laplace-Beltrami operator \({\partial_t^2 u - \Delta_g u = F}\) . Here, F = F(t, x, ω) is a random source that has white noise distribution supported on the boundary of some smooth compact domain \({M \subset \mathbb{R}^n}\) . We study the following formally posed inverse problem with only one measurement. Suppose that g is known only outside of a compact subset of M int and that a solution \({u(t, x, \omega_0)}\) is produced by a single realization of the source \({F(t, x, \omega_0)}\) . We ask what information regarding g can be recovered by measuring \({u(t, x, \omega_0)}\) on \({\mathbb{R}_+ \times \partial M}\) ? We prove that such measurement together with the realization of the source determine the scattering relation of the Riemannian manifold (M, g) with probability one. That is, for all geodesics passing through M, the travel times together with the entering and exit points and directions are determined. In particular, if (M, g) is a simple Riemannian manifold and g is conformally Euclidian in M, the measurement determines the metric g in M.  相似文献   

11.
Gaussian Multiplicative Chaos is a way to produce a measure on \({\mathbb{R}^d}\) (or subdomain of \({\mathbb{R}^d}\) ) of the form \({e^{\gamma X(x)} dx}\) , where X is a log-correlated Gaussian field and \({\gamma \in [0, \sqrt{2d})}\) is a fixed constant. A renormalization procedure is needed to make this precise, since X oscillates between ?∞ and ∞ and is not a function in the usual sense. This procedure yields the zero measure when \({\gamma = \sqrt{2d}}\) . Two methods have been proposed to produce a non-trivial measure when \({\gamma = \sqrt{2d}}\) . The first involves taking a derivative at \({\gamma = \sqrt{2d}}\) (and was studied in an earlier paper by the current authors), while the second involves a modified renormalization scheme. We show here that the two constructions are equivalent and use this fact to deduce several quantitative properties of the random measure. In particular, we complete the study of the moments of the derivative multiplicative chaos, which allows us to establish the KPZ formula at criticality. The case of two-dimensional (massless or massive) Gaussian free fields is also covered.  相似文献   

12.
We show that the Kadison–Singer problem, asking whether the pure states of the diagonal subalgebra \({\ell^\infty\mathbb{N}\subset \mathcal{B}(\ell^2\mathbb{N})}\) have unique state extensions to \({\mathcal{B}(\ell^2\mathbb{N})}\) , is equivalent to a similar statement in II1 factor framework, concerning the ultrapower inclusion \({D^\omega \subset R^\omega}\) , where D is the Cartan subalgebra of the hyperfinite II1 factor R (i.e., a maximal abelian *-subalgebra of R whose normalizer generates R, e.g. \({D=L^\infty([0, 1]^{\mathbb{Z}}) \subset L^\infty([0,1]^{\mathbb{Z}} \rtimes \mathbb{Z} = R)}\) , and ω is a free ultrafilter. Instead, we prove here that if A is any singular maximal abelian *-subalgebra of R (i.e., whose normalizer consists of the unitary group of A, e.g. \({A=L(\mathbb{Z})\subset L^\infty([0,1]^\mathbb{Z})\rtimes \mathbb{Z}=R}\) ), then the inclusion \({A^\omega \subset R^\omega}\) does satisfy the Kadison–Singer property.  相似文献   

13.
The primary goal of KamLAND is a search for the oscillation of \({\bar{\nu }}_\mathrm{e}\) ’s emitted from distant power reactors. The long baseline, typically 180 km, enables KamLAND to address the oscillation solution of the “solar neutrino problem” with \({\bar{\nu }}_{e} \) ’s under laboratory conditions. KamLAND found fewer reactor \({\bar{\nu }}_{e} \) events than expected from standard assumptions about \(\overline{\nu }_e\) propagation at more than 9 \(\sigma \) confidence level (C.L.). The observed energy spectrum disagrees with the expected spectral shape at more than 5 \(\sigma \) C.L., and prefers the distortion from neutrino oscillation effects. A three-flavor oscillation analysis of the data from KamLAND and KamLAND + solar neutrino experiments with CPT invariance, yields \(\Delta m_{21}^2 \) = [ \(7.54_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) , \(7.53_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) ], tan \(^{2}\theta _{12}\) = [ \(0.481_{-0.080}^{+0.092} \) , \(0.437_{-0.026}^{+0.029} \) ], and sin \(^{2}\theta _{13}\) = [ \(0.010_{-0.034}^{+0.033} \) , \(0.023_{-0.015}^{+0.015} \) ]. All solutions to the solar neutrino problem except for the large mixing angle region are excluded. KamLAND also demonstrated almost two cycles of the periodic feature expected from neutrino oscillation effects. KamLAND performed the first experimental study of antineutrinos from the Earth’s interior so-called geoneutrinos (geo \({\bar{\nu }}_{e} \) ’s), and succeeded in detecting geo \({\bar{\nu }}_{e} \) ’s produced by the decays of \(^{238}\) U and \(^{232}\) Th within the Earth. Assuming a chondritic Th/U mass ratio, we obtain \(116_{-27}^{+28} {\bar{\nu }}_{e}\) events from \(^{238}\) U and \(^{232}\) Th, corresponding a geo \({\bar{\nu }}_{e}\) flux of \(3.4_{-0.8}^{+0.8}\times \) 10 \(^{6}\) cm \(^{-2}\)  s \(^{-1}\) at the KamLAND location. We evaluate various bulk silicate Earth composition models using the observed geo \({\bar{\nu }}_{e} \) rate.  相似文献   

14.
A chiral-motivated \({\bar{K}N - \pi\Sigma - \pi\Lambda}\) potential was constructed and used in Faddeev calculations of different characteristics of \({\bar{K}NN - \pi\Sigma N}\) system. First of all, binding energy and width of the K ? pp quasi-bound state were newly obtained. The low-energy K ? d scattering amplitudes, including scattering length, together with the 1s level shift and width of kaonic deuterium were calculated. Comparison with the results obtained with the phenomenological \({\bar{K}N - \pi\Sigma}\) potential demonstrates that the chiral-motivated potential gives more shallow K ? pp state, while the characteristics of K ? d system are less sensitive to the form of \({\bar{K}N}\) interaction.  相似文献   

15.
We present a unified study of nucleon and \({\Delta}\) elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a symmetry-preserving treatment of a vector \({\otimes}\) vector contact-interaction. The comparison emphasises that experiments are sensitive to the momentum dependence of the running couplings and masses in the strong interaction sector of the Standard Model and highlights that the key to describing hadron properties is a veracious expression of dynamical chiral symmetry breaking in the bound-state problem. Amongst the results we describe, the following are of particular interest: \({G_{E}^{p}(Q^{2})/G_{M}^{p}(Q^{2})}\) possesses a zero at Q 2 = 9.5 GeV2; any change in the interaction which shifts a zero in the proton ratio to larger Q 2 relocates a zero in \({G_{E}^{n}(Q^{2})/G_M^{n}(Q^{2})}\) to smaller Q 2; there is likely a value of momentum transfer above which \({G_{E}^{n} > G_{E}^{p}}\) ; and the presence of strong diquark correlations within the nucleon is sufficient to understand empirical extractions of the flavour-separated form factors. Regarding the \({\Delta(1232)}\) -baryon, we find that, inter alia: the electric monopole form factor exhibits a zero; the electric quadrupole form factor is negative, large in magnitude, and sensitive to the nature and strength of correlations in the \({\Delta(1232)}\) Faddeev amplitude; and the magnetic octupole form factor is negative so long as rest-frame P- and D-wave correlations are included. In connection with the \({N \to \Delta}\) transition, the momentum-dependence of the magnetic transition form factor, \({G_{M}^{*}}\) , matches that of \({G_{M}^{n}}\) once the momentum transfer is high enough to pierce the meson-cloud; and the electric quadrupole ratio is a keen measure of diquark and orbital angular momentum correlations, the zero in which is obscured by meson-cloud effects on the domain currently accessible to experiment. Importantly, within each framework, identical propagators and vertices are sufficient to describe all properties discussed herein. Our analysis and predictions should therefore serve as motivation for measurement of elastic and transition form factors involving the nucleon and its resonances at high photon virtualities using modern electron-beam facilities.  相似文献   

16.
Antiproton-deuteron scattering is analyzed within the Glauber theory, accounting for the full spin dependence of the underlying \({\bar{N}N}\) amplitudes. The latter are taken from the Jülich \({\bar{N}N}\) models and from a recently published new partial-wave analysis of \({\bar{p}p}\) scattering data. Predictions for differential cross sections and the spin observables \({A_y^d}\) , \({A_y^{\bar{p}}}\) , A xx , A yy are presented for antiproton beam energies up to about 300 MeV. The efficiency of the polarization buildup for antiprotons in a storage ring is investigated.  相似文献   

17.
Compelling experimental evidences of neutrino oscillations and their implication that neutrinos are massive particles have given neutrinoless double beta decay ( \(\beta \beta 0\nu \) ) a central role in astroparticle physics. In fact, the discovery of this elusive decay would be a major breakthrough, unveiling that neutrino and antineutrino are the same particle and that the lepton number is not conserved. It would also impact our efforts to establish the absolute neutrino mass scale and, ultimately, understand elementary particle interaction unification. All current experimental programs to search for \(\beta \beta 0\nu \) are facing with the technical and financial challenge of increasing the experimental mass while maintaining incredibly low levels of spurious background. The new concept described in this paper could be the answer which combines all the features of an ideal experiment: energy resolution, low cost mass scalability, isotope choice flexibility and many powerful handles to make the background negligible. The proposed technology is based on the use of arrays of silicon detectors cooled to 120 K to optimize the collection of the scintillation light emitted by ultra-pure crystals. It is shown that with a 54 kg array of natural CaMoO \(_4\) scintillation detectors of this type it is possible to yield a competitive sensitivity on the half-life of the \(\beta \beta 0\nu \) of \(^{100}\) Mo as high as \(\sim \) \(10^{24}\)  years in only 1 year of data taking. The same array made of \(^{40}\) Ca \(^{\mathrm {nat}}\) MoO \(_4\) scintillation detectors (to get rid of the continuous background coming from the two neutrino double beta decay of \(^{48}\) Ca) will instead be capable of achieving the remarkable sensitivity of \(\sim \) \(10^{25}\)  years on the half-life of \(^{100}\) Mo \(\beta \beta 0\nu \) in only 1 year of measurement.  相似文献   

18.
We derive explicit formulas for λ-brackets of the affine classical \({\mathcal{W}}\) -algebras attached to the minimal and short nilpotent elements of any simple Lie algebra \({\mathfrak{g}}\) . This is used to compute explicitly the first non-trivial PDE of the corresponding integrable generalized Drinfeld–Sokolov hierarchies. It turns out that a reduction of the equation corresponding to a short nilpotent is Svinolupov’s equation attached to a simple Jordan algebra, while a reduction of the equation corresponding to a minimal nilpotent is an integrable Hamiltonian equation on 2h ˇ?3 functions, where h ˇ is the dual Coxeter number of \(\mathfrak{g}\) . In the case when \(\mathfrak{g}\) is \({\mathfrak{sl}_2}\) both these equations coincide with the KdV equation. In the case when \(\mathfrak{g}\) is not of type \({C_n}\) , we associate to the minimal nilpotent element of \(\mathfrak{g}\) yet another generalized Drinfeld–Sokolov hierarchy.  相似文献   

19.
We study the radiative decays of the X(3872) in the charmonium-molecule model combined with the quark potential model. We obtain \({\Gamma(X(3872) \to J/\psi \, \gamma) = 29.2\,{\rm keV}}\) and \({\Gamma(X(3872) \to \psi' \, \gamma) = 6.3\,{\rm keV}}\) . The ratio of these two is 0.22, which is much smaller than the BABAR observation. We find that the result is very sensitive to the amount of the \({\chi_{c1}(1P)}\) component in the X(3872).  相似文献   

20.
The final state interaction contribution to charged D decay into \({K \pi \pi}\) is computed within a light-front framework, considering S-wave \({K\pi}\) interactions in 1/2 and 3/2 isospin states. The convergence of the rescattering series is checked computing terms up to the third perturbative order. The role of the resonances above \({K^*_0(1430)}\) , and the contribution of the \({K\pi 3/2}\) isospin channel to charged three-body D decays, are studied against the available phase-shift analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号