共查询到20条相似文献,搜索用时 15 毫秒
1.
Stephen J. Spells Helmut Reinecke Javier Sacristán Jack Yarwood Carmen Mijangos 《Macromolecular Symposia》2003,203(1):147-154
Confocal Raman microspectroscopy has many potential applications in the study of polymer-solvent interactions, including the determination of solvent and polymer-solvent complex depth profiles. This contribution focuses on preventing the formation of polymer-solvent complexes, using surface chemical modification of PVC films. While the surface-specific nature of the film modification is easily demonstrated,[1] confocal Raman measurements clearly show the effects of film refractive index: the modifier depth profile shows a lack of symmetry and the film thickness is underestimated. A spectral normalisation method is described, and this is shown to result in a modifier depth profile which is in good agreement with data obtained by Raman microspectroscopy following physical cross-sectioning of a sample. Alternative techniques for Raman depth profiling are also discussed. 相似文献
2.
N. A. Freebody A. S. Vaughan A. M. Macdonald 《Analytical and bioanalytical chemistry》2010,396(8):2813-2823
Until 2006 the performance of confocal Raman spectroscopy depth profiling was typically described and modeled through the application of geometrical optics, including refraction at the surface, to explain the degree of resolution and the precise form of the depth profile obtained from transparent and semicrystalline materials. Consequently a range of techniques, physical and analytical, was suggested to avoid the errors thus encountered in order to improve the practice of Raman spectroscopy, if not the understanding of the underlying mechanisms. These approaches were completely unsuccessful in accounting for the precise form of the depth profile, the fact that spectra obtained from laminated samples always contain characteristic peaks from all materials present both well above and below the focal point and that spectra can be obtained when focused some 40 μm above the sample surface. This paper provides further evidence that the physical processes underlying Raman spectroscopy are better modeled and explained through the concept of an extended illuminated volume contributing to the final Raman spectrum and modeled through a photon scattering approach rather than a point focus ray optics approach. The power of this numerical model lies in its ability to incorporate, simultaneously, the effects of degree of refraction at the surface (whether using a dry or oil objective lens), the degree of attenuation due to scatter by the bulk of the material, the Raman scattering efficiency of the material, and surface roughness effects. Through this we are now able to explain why even removing surface aberration and refraction effects through the use of oil immersion objective lenses cannot reliably ensure that the material sampled is only that at or close to the point of focus of the laser. Furthermore we show that the precise form of the depth profile is affected by the degree of flatness of the surface of the sample. Perhaps surprisingly, we show that the degree of flatness of the material surface is, in fact, more important than obtaining a precise refractive index match between the immersion oil and the material when seeking a high-quality depth profile or Raman spectrum from within a transparent or semicrystalline material, contrary to accepted norms that samples for interrogation by Raman spectroscopy require little preparation. 相似文献
3.
L. M. Ramenskaya E. P. Grishina O. V. Kraeva 《Russian Journal of General Chemistry》2012,82(4):749-755
Methods of gravimetry, optical microscopy, FTIR spectroscopy, and conductometry were applied to the study of the adsorption of the following ionic liquids: 1-butyl-3-methylimidazolium chloride, bistrifluoromethylsulfonylimide, and trifluoroacetate on thin-layer films of polymers of different nature including polypropylene, polyethylene terephthalate, polytetrafluoroethylene, poly(vinyl chloride), and hydrated cellulose. It was established that the hydrated cellulose film can serve as polymer matrices for the ionconducting 1-butyl-3-methylimidazolium halide salts. The hydrated cellulose additive in the ionic liquids promotes their immobilization on the poly(vinyl chloride) film. 相似文献
4.
Columnar nanostructured polymer films containing ionic liquids in supramolecular one-dimensional nanochannels 下载免费PDF全文
Akihiro Yamashita Masafumi Yoshio Seiya Shimizu Takahiro Ichikawa Hiroyuki Ohno Takashi Kato 《Journal of polymer science. Part A, Polymer chemistry》2015,53(2):366-371
Ionic liquids have attracted a considerable attention as the next generation electrolytes for energy devices. We have developed new free-standing and nanostructured polymer films in which ionic liquids are confined into one-dimensionally ordered nanochannels. These polymer films have been obtained by photopolymerization of hydrogen-bonded supramolecular columnar liquid-crystalline self-assemblies of an imidazolium-based ionic liquid and a wedge-shaped diol compound containing polymerizable groups. The macroscopically parallel alignment of the columnar structures on a glass substrate has been achieved by the application of mechanical shearing, and subsequently fixed into polymer films by UV irradiation. This ionic liquid-containing polymer film exhibits higher ionic conductivity than that of the previously reported one-dimensional polymer film obtained by in situ photopolymerization of a covalent-type columnar liquid-crystalline imidazolium salt. The noncovalent supramolecular approach to one-dimensionally ion-conductive polymer films has led to improvement on conductive properties. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 366–371 相似文献
5.
Janesko BG 《Physical chemistry chemical physics : PCCP》2011,13(23):11393-11401
Dissolution of lignocellulose in ionic liquids is a promising route to synthesizing fuels and chemical feedstocks from woody plant materials. While cellulose dissolution is well-understood, less is known about the differences between ionic liquids' interactions with cellulose vs. lignin. This work uses dispersion-corrected density functional theory (DFT-D) to model the interactions of imidazolium chloride ionic liquid anions and cations with (1,4)-dimethoxy-β-D-glucopyranose and 1-(4-methoxyphenyl)-2-methoxyethanol as models for cellulose and the lignin polyphenol, respectively. The cellulose model preferentially interacts with Cl(-), confirming previous experimental and theoretical studies. However, the lignin model has significant π-stacking and hydrogen bonding interactions with imidazolium cation. These results are robust to changes in the computational details, and suggest that the ionic liquid cations play important roles in tuning the relative solubilities of lignin and cellulose. Calculations predict that the extended π-systems of benzimidazolium ionic liquids yield stronger interactions with lignin, showing potential for improved lignocellulose solvents. 相似文献
6.
Ya. S. Vygodskii O. A. Mel’nik A. S. Shaplov E. I. Lozinskaya I. A. Malyshkina N. D. Gavrilova 《Polymer Science Series A》2007,49(3):256-261
Four vinyl monomers containing a covalently bonded cation ethylimidazolium and various anions—Br?, (CF3SO2)2N?, (CN)2N?, and CF3SO 3 ? —have been synthesized. High-molecular-mass polymers (M w up to 1.84 × 106) having the structure of ionic liquids have been prepared via the free-radical polymerization of 1-vinyl-3-ethylimidazolium in bulk and molecular and ionic solvents. The thermal stability and heat resistance of the resulting polymer salts have been estimated. It has been demonstrated that the thermal characteristics of these salts significantly depend on the nature of anions. The glass-transition temperatures of the polymers range from 19 to 235°C. The ionic conductivity of the polymer salts and their compositions with individual ionic liquids has been studied in the frequency range 50–106 Hz. The highest conductivity (1.5 × 10?5 S/cm) is exhibited by the polymer containing the (CN)2N? anion. 相似文献
7.
(19)F,(1)H HOESY experiments with three ionic liquids ([bmim]BF(4), [bmim]PF(6) and [emim]BF(4)) were run in two different solvents and neat. The results give preferred probabilities of presence and enable us to systematically study interactions between the cations and the anions in the ionic liquid phase by NMR spectroscopy. The influence of different solvents and of the presence or absence of air (i.e. oxygen) is discussed. This enabled us to substantially speed up the NMR experiments and to develop a more precise method for the investigation of liquid-phase structures in ionic liquids. 相似文献
8.
Large (10 × 10 cm) sheets of surface-enhanced Raman spectroscopy (SERS) active polymer have been prepared by stabilising metal nanoparticle aggregates within dry hydroxyethylcellulose (HEC) films. In these films the aggregates are protected by the polymer matrix during storage but in use they are released when aqueous analyte droplets cause the films to swell to their gel form. The fact that these “Poly-SERS” films can be prepared in bulk but then cut to size and stored in air before use means that they provide a cost effective and convenient method for routine SERS analysis. Here we have tested both Ag and Au Poly-SERS films for use in point-of-care monitoring of therapeutic drugs, using phenytoin as the test compound. Phenytoin in water could readily be detected using Ag Poly-SERS films but dissolving the compound in phosphate buffered saline (PBS) to mimic body fluid samples caused loss of the drug signal due to competition for metal surface sites from Cl− ions in the buffer solution. However, with Au Poly-SERS films there was no detectable interference from Cl− and these materials allowed phenytoin to be detected at 1.8 mg L−1, even in PBS. The target range of detection of phenytoin in therapeutic drug monitoring is 10–20 mg L−1. With the Au Poly-SERS films, the absolute signal generated by a given concentration of phenytoin was lower for the films than for the parent colloid but the SERS signals were still high enough to be used for therapeutic monitoring, so the cost in sensitivity for moving from simple aqueous colloids to films is not so large that it outweighs the advantages which the films bring for practical applications, in particular their ease of use and long shelf life. 相似文献
9.
Marek W. Urban 《Macromolecular Symposia》1999,141(1):15-31
Behavior of macromolecules near surfaces and interfaces of polymeric thin films and coatings may play a vital role in numerous applications. Therefore, understanding of molecular level processes responsible for durability, adhesion, and many other macroscopic processes is of a particular importance. This presentation will focus on stratification processes in multi-component polymeric films, with particular emphasis to polymer-surfactant interactions in latexes, responsiveness of individual components during coalescence of water-borne polyurethanes, and behavior of thermoplastic olefins (TPO). The presence of macromolecular arrangements and interactions among various components near the film-air (F-A) and the film-substrate (F-S) interfaces can be effectively monitored using attenuated total reflectance (ATR) and step-scan photoacoustic (SS-PA) Fourier transform infrared (FT-IR) spectroscopy. Both approaches are capable of obtaining information from various surface depths and complement each other if one seeks molecular level information from 0 – 150 μm into the film. If one combines ATR and PA information with IR and/or Raman surface imaging, it is possible to obtain a 3-dimensional representation of polymeric films. 相似文献
10.
We have measured the terahertz (THz) complex dielectric spectra of imidazolium ionic liquids by THz time-domain spectroscopy (THz-TDS) in the frequency range from 5 (0.15 THz) to 140 cm(-1) (4.2 THz). The ionic liquids investigated are 1-ethyl-3-methylimidazolium (EMIm+)/trifluoromethanesulfonate (TfO-), EMIm+/tetrafluoroborate (BF(4)-), 1-butyl-3-methylimidazolium (BMIm+)/TfO-, and BMIm+/BF(4)-. The dielectric values of the ionic liquids in the THz region are similar to those of short-chain alcohols. The THz dielectric values are related to subpicosecond-to-picosecond dynamics. The same trend has been observed in the empirical polarity ET(30) although it is related to the static characteristics of polarity and hydrogen bonding ability. A difference between the two types of liquids is observed in the THz dielectric spectral shapes: the ionic liquids show structured lineshapes but short-chain alcohols show much less structured ones. The structured lineshapes of the ionic liquids reflect the low-frequency motions of interion and/or intramolecular vibrations. When the ionic liquids composed of the different imidazolium cations contain the same anions as counterions, their density-normalized THz dielectric spectra above 20 cm(-1) bear strong resemblance to each other in shape and magnitude. It shows clearly that the THz spectra do not originate from the intramolecular vibrations of the imodazolium cations. All of the intramolecular vibrations of the anions are located above 140 cm(-1) except the CF3-SO3 torsion of TfO-, the band of which alone cannot explain the broad THz dielectric spectra of the ionic liquids. Therefore, we conclude that the interion vibrations rather than the intramolecular vibrations dominantly contribute to the THz dielectric spectra. The results strongly indicate that even in the liquid phase the ionic liquids have local structures similar to their solid-phase structures. 相似文献
11.
In this study, the possibility of using Tween 80 to disturb the microstructures of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) was investigated under high pressures. The imidazolioum C H absorptions of pure ionic liquids (ILs) are significantly blue-shifted under high pressures. However, mild changes in imidazolioum C H stretching frequencies were observed for IL/Tween 80 mixtures. Tween 80 may hinder cations of ILs to form network structures with anions under high pressures via pressure-enhanced cation-Tween 80 interactions. Based on the experimental results, Tween 80-[BMIM]PF6 interactions are more effective in disturbing the local structure of imidazolium C H than Tween 80-[BMIM]BF4 interactions. 相似文献
12.
Yoshida K Iwata K Nishiyama Y Kimura Y Hamaguchi HO 《The Journal of chemical physics》2012,136(10):104504
Vibrational cooling rate of the first excited singlet (S(1)) state of trans-stilbene and bulk thermal diffusivity are measured for seven room temperature ionic liquids, C(2)mimTf(2)N, C(4)mimTf(2)N, C(4)mimPF(6), C(5)mimTf(2)N, C(6)mimTf(2)N, C(8)mimTf(2)N, and bmpyTf(2)N. Vibrational cooling rate measured with picosecond time-resolved Raman spectroscopy reflects solute-solvent and solvent-solvent energy transfer in a microscopic solvent environment. Thermal diffusivity measured with the transient grating method indicates macroscopic heat conduction capability. Vibrational cooling rate of S(1) trans-stilbene is known to have a good correlation with bulk thermal diffusivity in ordinary molecular liquids. In the seven ionic liquids studied, however, vibrational cooling rate shows no correlation with thermal diffusivity; the observed rates are similar (0.082 to 0.12 ps(-1) in the seven ionic liquids and 0.08 to 0.14 ps(-1) in molecular liquids) despite large differences in thermal diffusivity (5.4-7.5 × 10(-8) m(2) s(-1) in ionic liquids and 8.0-10 × 10(-8) m(2) s(-1) in molecular liquids). This finding is consistent with our working hypothesis that there are local structures characteristically formed in ionic liquids. Vibrational cooling rate is determined by energy transfer among solvent ions in a local structure, while macroscopic thermal diffusion is controlled by heat transfer over boundaries of local structures. By using "local" thermal diffusivity, we are able to simulate the vibrational cooling kinetics observed in ionic liquids with a model assuming thermal diffusion in continuous media. The lower limit of the size of local structure is estimated with vibrational cooling process observed with and without the excess energy. A quantitative discussion with a numerical simulation shows that the diameter of local structure is larger than 10 nm. If we combine this lower limit, 10 nm, with the upper limit, 100 nm, which is estimated from the transparency (no light scattering) of ionic liquids, an order of magnitude estimate of local structure is obtained as 10 nm < L < 100 nm, where L is the length or the diameter of the domain of local structure. 相似文献
13.
Nobuoka K Kitaoka S Iio M Harran T Ishikawa Y 《Physical chemistry chemical physics : PCCP》2007,9(44):5891-5896
We directly observe the interaction between 1-butyl-3-methylimidazolium (bmim) or 1-butyl-2,3-dimethylimidazolium (bm(2)im) and the solute, ethyl acrylate (EA), which is the popular dienophile in the Diels-Alder reaction and an H-bonding acceptor, by using specially designed electrospray mass spectrometry. In imidazolium ionic liquids, cation-anion interactions are controlled by selecting the appropriate anion, and the naked C(2)-H of imidazolium, which loosely interacts with its counterion, can readily interact with an H-bonding acceptable solute. The ion-counterion (solvent-solvent) interaction affects the ion-solute (solvent-solute) interaction. This relation is one of the key criteria for selecting the cation-anion combination in tailoring ILs. 相似文献
14.
The pressure dependence of the reorientational correlation function for chloroform has been measured by analysis of the Raman 3019 cm? 1 A1 CH stretching lineshape at 1, 1000, and 2000 bar and 23°C. These reorientational correlation functions were obtained using the method of spectral Fourier deconvolution introduced by Bratos. The results are compared to the correlation times obtained from the NMR deuteron T1 relaxation times for CDCl3 and those calculated from high pressure viscosity measurements. 相似文献
15.
Ionic liquids (ILs) have been the focus of many scientific investigations including the field of analytical microextractions.
ILs have many advantages over traditional organic solvents making them excellent candidates as extraction media for a variety
of microextraction techniques. Many physical properties of ILs can be varied, and the structural design and make-up can be
tuned to impart desired functionality for enhancement of analyte extraction selectivity, efficiency, and sensitivity. This
paper provides a brief overview of ionic liquids and highlights trends in three important sample-preparation techniques, namely,
single drop microextraction, solid-phase microextraction, and dispersive liquid–liquid microextraction in terms of performing
task-specific extractions using these highly versatile solvents. 相似文献
16.
In this study, ionic liquid based cationic surfactants were evaluated as pseudo-stationary phases in micellar electrokinetic chromatography (MEKC). The aggregation behaviour of long-chain (C(12) and C(14)) alkylimidazolium ionic liquids in water and aqueous phosphate buffer was investigated by spectrophotometry. The critical micelle concentrations of these salts were determined and compared to those of tetradecyl- and dodecyltrimethylammonium chloride, salts commonly used in capillary electrophoresis. The practical utilization of a new type of surfactant in MEKC was evaluated by introducing an ionic liquid into the running aqueous buffer to separate neutral analytes-methylresorcinol isomers and benzene derivatives. 相似文献
17.
Polymerfilmformationfromeitherlatexorsolutionisquiteaninterestingbutcomplicatedsubjectdealingwithdiffusion,interpenetrationandcoagulationofpolymerchains,andespeciallycorrelatedtothepropertiesofthefinallyformedfilm.Manystudies[1—3]havebeencarriedoutonlat… 相似文献
18.
We investigate seven 1-alkyl-1-methylpyrrolidinium-based ionic liquids, [C(n)C(1)Pyrr][X], using X-ray photoelectron spectroscopy (XPS). The electronic environment for each element is analysed and a robust fitting model is developed for the C 1s region that applies to each of the ionic liquids studied. This model allows accurate charge correction and the determination of reliable and reproducible binding energies for each ionic liquid studied. The electronic interaction between the cation and anion is investigated for ionic liquids with one and also two anions. i.e., mixtures. Comparisons are made to imidazolium-based ionic liquids; in particular, a detailed comparison is made between [C(8)C(1)Pyrr][X] and [C(8)C(1)Im][X](-), where X(?) is common to both ionic liquids. 相似文献
19.
Chris Sammon Sohail Hajatdoost Peter Eaton Carine Mura Jack Yarwood 《Macromolecular Symposia》1999,141(1):247-262
The recent development of Raman microscopes with high optical throughput and very sensitive CCD cameras has led to Raman spectroscopy again competing effectively with FTIR methods for materials analysis. Modern Raman instruments, designed to operate confocally without serious alignment or energy trade-off problems, allow depth profiling of optically transparent polymers and polymer matrices to be routinely obtained with a spatial resolution of 1–2 μm. The use of such an instrument is illustrated by describing recent work on polymeric material problems including, 1 The distribution and redistribution of small molecules in polymeric matrices. 2 The monitoring of adhesion primer diffusion at a polymer/silica interface. 3 The determination of the extent of interdiffusion and interaction at a polymer/polymer interface. 4 A comparison of confocal and micotoming approaches to polymer laminate analysis. The range of possible applications is increasing rapidly. It is clear that Raman microscopy will become a very important tool for future materials analysis, both in the polymer area and many other areas. 相似文献
20.
Scanning angle (SA) Raman spectroscopy was used to measure the thickness and composition of polystyrene films. A sapphire prism was optically coupled to a sapphire substrate on which 6–12% (w/v) polystyrene in toluene was spin coated. Raman spectra were collected as the incident angle of the p-polarized, 785-nm excitation laser was varied from 56 to 70°. These angles span above and below the critical angle for a sapphire/polystyrene interface. The thickness of the polystyrene film was determined using a calibration curve constructed by calculating the integrated optical energy density distribution as a function of incident angle, distance from the prism interface and polymer thickness. The calculations were used to determine the incident angle where waveguide modes are excited within the polymer film, which is the angle with the highest integrated optical energy density. The film thicknesses measured by SA Raman spectroscopy ranged from less than 400 nm to 1.8 μm. The average percent uncertainty in the SA Raman determinations for all films was 4%, and the measurements agreed with those obtained from optical interferometery within the experimental uncertainty for all but two films. For the 1270-nm and 580-nm polystyrene films, the SA Raman measurements overestimated the film thickness by 5 and 18%, respectively. The dependence of the calibration curve on excitation polarization and composition of the polymer and bulk layers was evaluated. This preliminary investigation demonstrates that scanning angle Raman spectroscopy is a versatile method applicable whenever the chemical composition and thickness of interfacial polymer layers needs to be measured. 相似文献