首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SiOx films (1<x<2), 0.5 μm thick, have been elaborated by electron-gun evaporation. A thermal annealing of these films induced a phase separation leading to the formation of Si nanocrystals embedded in a SiO2 matrix. These films have been studied by infrared spectroscopic ellipsometry and by X-ray photoelectron spectroscopy (XPS). The effective dielectric function of the thin films has been extracted in the 600–5000 cm−1 range which allowed us to deduce the dielectric function of the matrix surrounding the Si-nc. A study of the Transverse Optical (TO) vibration mode has revealed the presence of SiOx into the matrix. Before XPS measurements, the films have been etched in fluorhydric acid to remove the superficial SiO2 layer formed during air exposure. The Si 2p core-level emission has been recorded. The decomposition of the Si 2p peak into contributions of the usual five tetrahedrons Si-(Si4−nOn) (n=0–4) has also revealed the presence of a SiOx phase. Consistency between infra-red and XPS results is discussed.  相似文献   

2.
Raman spectra acquired from Si x Ge1−x -nanocrystal-embedded SiO2 films show dependence of the Si–Si optical phonon frequency on Si content. The frequency upshifts, and peak intensity increases as the silicon concentration increases. For a given Si content, the frequency remains unchanged with annealing temperature. Spectral analysis and density functional theory calculation reveal that the optical Si–Si phonon is related to the formation of localized Si clusters surrounded by Si/Ge atomic layers in the Si x Ge1−x nanocrystals and the intensity enhancement arises from the larger cluster size. The synergetic effect of surface tensile stress and phonon confinement determines the Si–Si optical phonon behavior.  相似文献   

3.
We report on continuous-wave laser induced crystallisation processes occurring in Si/SiO2 multiple quantum wells (MQW), prepared by remote plasma enhanced chemical vapour deposition of amorphous Si and SiO2 layers on quartz substrates. The size and the volume fraction of the Si nanocrystals in the layers were estimated employing micro-Raman spectroscopy. It was found that several processes occur in the Si/SiO2 MQW system upon laser treatment, i.e. amorphous to nanocrystalline conversion, Si oxidation and dissolution of the nanocrystals. The speed of these processes depends on laser power density and the wavelength, as well as on the thickness of Si-rich layers. At optimal laser annealing conditions, it was possible to achieve ∼100% crystallinity for 3, 5 and 10 nm thickness of deposited amorphous Si layers. Crystallization induced variation of the light absorption in the layers can explain the complicated process of Si nanocrystals formation during the laser treatment.  相似文献   

4.
Co-doped ZnO-Ga2O3-SiO2 nano-glass-ceramic composites were prepared by sol-gel method. X-ray diffraction patterns showed that the crystallization temperature was 800 °C. X-ray photoelectron spectroscopy (XPS) was used to study the effect of heat-treatment temperature on the electronic structure of Co-doped ZnO-Ga2O3-SiO2 nano-glass-ceramic composites. The Zn (2p3/2), Ga (2p3/2) and O (1s) XPS spectra for the glass-ceramics heat-treated at 800-1000 °C could be deconvoluted into two peaks corresponding to these elements in glass network and in nanocrystals, respectively. The results indicate that the material is composed of an amorphous silicate network and ZnGa2O4 nanocrystalline particles. The amount of nanocrystals increases with the annealing temperature. The photoelectron peak of Si (2p) shifts to higher binding energy at higher annealing temperature, revealing the charge transfer from Si to O increased. The relationship between the microstructure of Co-doped ZnO-Ga2O3-SiO2 sample and its absorption properties was discussed, and the suitable heat-treatment temperature was proposed.  相似文献   

5.
The formation of silicon nanoclusters embedded in amorphous silicon nitride (SiNx:H) can be of great interest for optoelectronic devices such as solar cells. Here amorphous SiNx:H layers have been deposited by remote microwave-assisted chemical vapor deposition at 300 °C substrate temperature and with different ammonia [NH3]/silane [SiH4] gas flow ratios (R=0.5−5). Post-thermal annealing was carried out at 700 °C during 30 min to form the silicon nanoclusters. The composition of the layers was determined by Rutherford back scattering (RBS) and elastic recoil detection analysis (ERDA). Fourier transform infrared spectroscopy (FTIR) showed that the densities of SiH (2160 cm−1) and NH (3330 cm−1) molecules are reduced after thermal annealing for SiN:H films deposited at flow gas ratio R>1.5. Breaking the SiH bonding provide Si atoms in excess in the bulk of the layer, which can nucleate and form Si nanostructures. The analysis of the photoluminescence (PL) spectra for different stoichiometric layers showed a strong dependence of the peak characteristics (position, intensity, etc.) on the gas flow ratio. On the other hand, transmission electron microscopy (TEM) analysis proves the presence of silicon nanoclusters embedded in the films deposited at a gas flow ratio of R=2 and annealed at 700 °C (30 min).  相似文献   

6.
Structures containing silicon nanocrystals (nc-Si) are very promising for Si-based light-emitting devices. Using a technology compatible with that of silicon, a broader wavelength range of the emitted photoluminescence (PL) was obtained with nc-Si/SiO2 multilayer structures. The main characteristic of these structures is that both layers are light emitters. In this study we report results on a series of nc-Si/SiO2 multilayer periods deposited on 200 nm thermal oxide SiO2/Si substrate. Each period contains around 10 nm silicon thin films obtained by low-pressure chemical vapour deposition at T=625°C and 100 nmSiO2 obtained by atmospheric pressure chemical vapour deposition T=400°C. Optical and microstructural properties of the multilayer structures have been studied by spectroscopic ellipsometry (using the Bruggemann effective medium approximation model for multilayer and multicomponent films), FTIR and UV–visible reflectance spectroscopy. IR spectroscopy revealed the presence of SiOx structural entities in each nc-Si/SiO2 interface. Investigation of the PL spectra (using continuous wave-CW 325 nm and pulsed 266 nm laser excitation) has shown several peaks at 1.7, 2, 2.3, 2.7, 3.2 and 3.7 eV, associated with the PL centres in SiO2, nc-Si and Si–SiO2 interface. Their contribution to the PL spectra depends on the number of layers in the stack.  相似文献   

7.
利用等离子体增强化学气相沉积法制备了富硅氮化硅/富氮氮化硅多层膜,并以此氮化硅基多层膜作为有源层构建电致发光器件,在室温下观察到了较强的电致可见发光.在此基础上,研究多层膜结构中作为势垒层的富氮氮化硅层对器件电致发光性质的影响,实验结果表明通过改变势垒层的Si/N组分,调制其势垒高度,器件的电致发光效率可得到显著地提高. 关键词: 电致发光 多层膜 氮化硅  相似文献   

8.
Anisotropic (elliptically polarized) photoinduced second harmonic generation (PISHG) in SiNxOy/Si1 1 1 films was proposed for contact-less monitoring of specimens with different nitrogen to oxygen (N/O) ratios. As a source for the photoinducing light, we used a nitrogen Q-switched pulse laser at wavelengths of 315, 337 and 354 nm as well as doubled frequency YAG–Nd laser wavelength (λ=530 nm). The YAG : Nd pulse laser (λ=1.06 μm; W=30 MW; τ=10–50 ps) was used to measure the PISHG. All measurements were done in a reflected light regime. We found that the output PISHG signal was sensitive to the N/O ratio and the film thickness. Measurements of the PISHG versus pumping wavelengths, powers, incident angles as well as independent measurements of the DC-electric field induced second harmonic generation indicate the major role played in this process by axially symmetric photoexcited electron–phonon states. The SiNxOy films were synthesized using a technique of chemical evaporation at low pressures. Films with thickness varying between 10 and 30 nm and with an N/O ratio between 0 and 1 were obtained. Electrostatic potential distribution at the Si1 1 1–SiNxOy interfaces was calculated. Comparison of the experimentally obtained and quantum chemically calculated PISHG data are presented. High sensitivity of anisotropic PISHG to the N/O ratio and film thickness is revealed. The role of the electron–phonon interactions in the dependencies observed is discussed. We have shown that the PISHG method has higher sensitivity than the traditional extended X-ray absorption fine structure spectroscopic and linear optical method for films with the N/O ratio higher than 0.50.  相似文献   

9.
The phase separation in amorphous silicon suboxide (a-SiOx) films upon thermal annealing for the formation of light emitting silicon nanocrystals (Si-NCs) was studied through the correlation of photoluminescence (PL) and photoluminescence excitation (PLE) with structural and optical properties. The PL and PLE features and the structural and optical properties show a strong dependence on the annealing process and reveal that the precipitation of the excess Si in a-SiOx and the formation of Si-NCs from the precipitated Si are two separate processes which should be distinguished in the phase separation in a-SiOx. They proceed at different temperatures and the formation of Si-NCs is a slow process compared with the precipitation of the excess Si. The nanocrystal size and size distribution evolve with annealing time at the initial stages and are mainly dependent on annealing temperature for a certain O content in the initial a-SiOx with the density of the formed Si-NCs increasing with longer annealing duration.  相似文献   

10.
Si/SiO2 superlattices were prepared by magnetron sputtering, and the deposition temperature and annealing temperature had a great influence on the superlattice structure. In terms of SEM images, the mean size of Si nanocrystals annealed at 1100 °C is larger than that of nanocrystals annealed at 850 °C. It was found that the films deposited at room temperature are amorphous. With increasing deposition temperature, the amorphous and crystalline phases coexist. With increasing annealing temperature, the Raman intensity of the peak near 470 cm−1 decreases, and the intensity of that at 520 cm−1 increases. Also, on increasing the annealing temperature, the Raman peak near 520 cm−1 shifts and narrows, and asymmetry emerges. A spherical cluster is used to model the nanocrystals in Si/SiO2 superlattices, and the observed Raman spectra are analyzed by combining the effects of confinement on the phonon frequencies. Raman spectra from a variety of nanocrystalline silicon structures were successfully explained in terms of the phonon confinement effect. The fitted results agreed well with the experimental observations from SEM images.  相似文献   

11.
Effects of the passivation of SiNx on the high temperature transport characteristics of the two-dimensional electron gas (2DEG) in unintentionally doped AlxGa1−xN/GaN heterostructures have been investigated by means of high temperature Hall measurements. The 2DEG density increases much after SiNx passivation, and the increment is proportional to the Si content in SiNx layer, indicating that the increment is mainly caused by ionized Si atoms at the SiN/AlxGa1−xN interface with dangling bonds or by Si atoms incorporated into the AlxGa1−xN layer during the SiNx growth, which is approved by strain analysis and X-ray photoemission spectroscopy (XPS). There is lower 2DEG mobility at room temperature in a passivated sample than in an unpassivated one. However, the 2DEG mobility becomes to be higher in a passivated sample than in an unpassivated one when the temperature is above 250 °C, which is suggested to be caused by different subband occupation ratios in the triangular quantum well at the heterointerface before and after passivation.  相似文献   

12.
Hf1−xSixOy is an attractive candidate material for high-k dielectrics. We report in this work the deposition of ultra-thin Hf1−xSixOy films (0.1 ≤ x ≥ 0.6) on silicon substrate at 450 °C by UV-photo-induced chemical vapour deposition (UV-CVD) using 222 nm excimer lamps. Silicon(IV) and hafnium(IV) organic compounds were used as the precursors. Films from around 5 to 40 nm in thickness with refractive indices from 1.782 to 1.870 were grown. The deposition rate was found to be of 6 nm/min at a temperature of 450 °C. The physical, interfacial and electrical properties of hafnium silicate (Hf1−xSixOy) thin films were investigated by using X-ray photoelectron spectroscopy, ellipsometry, FT-IR, C-V and I-V measurements. XRD showed that they were basically amorphous, while Fourier transform infrared spectroscopy (FT-IR), clearly revealed Hf-O-Si absorption in the photo-CVD deposited Hf1−xSixOy films. Surface and interfacial properties were analysed by TEM and XPS. It is found that carbon content in the films deposited by UV-CVD is very low and it also decreases with increasing Si/(Si + Hf) ratio, as low as about 1 at.% at the Si/(Si + Hf) ratio of 60 at.%.  相似文献   

13.
The physical and chemical properties of the HfO2/SiO2/Si stack have been analyzed using cross-section HR TEM, XPS, IR-spectroscopy and ellipsometry. HfO2 films were deposited by the MO CVD method using as precursors the tetrakis 2,2,6,6 tetramethyl-3,5 heptanedionate hafnium—Hf(dpm)4 and dicyclopentadienil-hafnium-bis-diethylamide—Сp2Hf(N(C2H5)2)2.The amorphous interface layer (IL) between HfO2 and silicon native oxide has been observed by the HRTEM method. The interface layer comprises hafnium silicate with a smooth varying of chemical composition through the IL thickness. The interface layer formation occurs both during HfO2 synthesis, and at the annealing of the HfO2/SiO2/Si stack. It was concluded from the XPS, and the IR-spectroscopy that the hafnium silicate formation occurs via a solid-state reaction at the HfO2/SiO2 interface, and its chemical structure depends on the thickness of the SiO2 underlayer.  相似文献   

14.
Phosphorous-doped and boron-doped amorphous Si thin films as well as amorphous SiO2/Si/ SiO2 sandwiched structures were prepared in a plasma enhanced chemical vapor deposition system. Then, the p–i–n structures containing nano-crystalline Si/ SiO2 sandwiched structures as the intrinsic layer were prepared in situ followed by thermal annealing. Electroluminescence spectra were measured at room temperature under forward bias, and it is found that the electroluminescence intensity is strongly influenced by the types of substrate. The turn-on voltages can be reduced to 3 V for samples prepared on heavily doped p-type Si (p+-Si) substrates and the corresponding electroluminescence intensity is more than two orders of magnitude stronger than that on lightly doped p-type Si (p-Si) and ITO glass substrates. The improvements of light emission can be ascribed to enhanced hole injection and the consequent recombination of electron–hole pairs in the luminescent nanocrystalline Si/ SiO2 system.  相似文献   

15.
利用直流脉冲磁控溅射法在室温下制备无氢SiNx薄膜.通过傅里叶变换红外光谱、台阶仪、紫外—可见分光光度计、接触角测量仪、透湿测试仪等表征技术,分析了N2流量、Si靶溅射功率等实验参数对SiNx薄膜成分、结构、及阻透性能、透光性能、接触角等性能的影响.研究结果表明,Si靶溅射功率固定时,在低N2流量条件下,或N2流量固定时,在高Si靶溅射功率条件下,制备的SiN 关键词x')" href="#">SiNx 磁控溅射 微观结构 阻透性能  相似文献   

16.
Structural and optical properties of a-SiNx films deposited by electron cyclotron resonance chemical vapor deposition (ECRCVD) have been investigated. The Fourier transform infrared (FTIR) spectroscopy shows the structural evolution of the SiNx films, which are defined as Si-rich SiNx and N-rich SiNx films, also confirmed by Raman spectroscopy. The origin of the light emission for SiNx films may be attributed to two mechanisms, i.e., quantum confinement effect (QCE) and transition of defect energy levels. The correlation between light emission and structures of SiNx films is discussed.  相似文献   

17.
Self-assembling of isoelectronic C and Sn impurities in Ge is predicted. The formation of the 1C4Sn tetrahedral cells is thermodynamically profitable in Ge-rich CxSnyGe1−x−y (4x<y) alloys in the ultra dilute C impurity limit with 1×10-8x1×10-3. The concentrations of Sn atoms when all C atoms are surrounded only by Sn atoms are estimated for the lower molecular beam epitaxy, intermediate annealing and higher bulk crystallization temperatures. The origin of this phenomenon is a considerable decrease of the strain energy after self-assembling. The same self-assembling in Si is thermodynamically non-profitable due to the large cohesive energy of Si–C chemical bonds.  相似文献   

18.
Hydrogenated amorphous silicon carbide (a-Si1-xCx:H) films were deposited by RF plasma enhanced chemical vapor deposition (PECVD) and subsequently annealed in N2 atmosphere at different temperatures. Systematic investigations of the deposition temperature and annealing effect on the film's properties, including film thicknesses, optical bandgap, refractive indexes, absorption coefficient (α), chemical bond configurations, stoichiometry and crystalline structures, were performed using ellipsometry, FTIR absorbance spectroscopy, Raman spectroscopy, XPS, and XRD. All of the results indicate that the structural and optical properties of the a-Si1-xCx:H film can be effectively engineered by proper annealing conditions. Moreover, molecular vibrational level equation was introduced to explain the peak shift detected by FTIR and Raman spectroscopy.  相似文献   

19.
王祥  黄锐  宋捷  郭艳青  陈坤基  李伟 《物理学报》2011,60(2):27301-027301
在等离子体增强化学气相沉积系统中利用大氢稀释逐层淀积技术制备nc-Si量子点阵列,用硅烷和氨气混合气体淀积氮化硅层,制备了a-SiNx/nc-Si/a-SiNx不对称双势垒结构,其中隧穿和控制a-SiNx层的厚度分别为3和20 nm.利用电导-电压和电容-电压测量研究结构中的载流子隧穿和存储特性.在同一样品中观测到由于电荷隧穿引起的电导峰和由于电荷存储引起的电容回滞现象.研究结果表明,合理地选择隧穿层和控制栅层的厚度,就能够实现载流子发生共振隧穿进入到nc-Si量子点中,并被保存在nc-Si量子点中. 关键词: nc-Si量子点 电导峰 存储效应  相似文献   

20.
SiO2 layer structures with a middle layer containing Ge nanocrystals were prepared by sputtering on n- and p-type Si substrates, and by consecutive annealing. Ge content in the middle layer was varied in the range of 40-100%. Most of the structures exhibited low breakdown voltages. The current through the structures became Schottky-like after breakdown. However, some p-type samples showed a considerable memory effect. It was obtained by spectroscopic ellipsometry that the middle layer contains amorphous Ge phase as well. The results also suggest intermixing of the layers during the sputtering and/or the annealing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号