首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hard/soft-acid/base (HSAB) principle indicates that hard acids prefer binding to hard bases (often forming bonds with substantial ionic character) while soft acids prefer binding to soft bases (often forming bonds with substantial covalent character). Though the HSAB principle is a foundational concept of the modern theory of acids and bases, the theoretical underpinnings of the HSAB principle remain murky. This paper examines the exchange reaction, wherein two molecules, one the product of reacting a hard acid and a soft base and the other the product of reacting a soft acid with a hard base, exchange substituents to form the preferred hard-hard and soft-soft product. A simple derivation shows that this reaction is exothermic, proving the validity of the HSAB principle. The analysis leads to the simple and conceptually appealing conclusion that the HSAB principle is a driven by simple electron transfer effects.  相似文献   

2.
Ayers, Parr, and Pearson recently showed that insight into the hard/soft acid/base (HSAB) principle could be obtained by analyzing the energy of reactions in hard/soft exchange reactions, i.e., reactions in which a soft acid replaces a hard acid or a soft base replaces a hard base [J. Chem. Phys., 2006, 124, 194107]. We show, in accord with the maximum hardness principle, that the hardness increases for favorable hard/soft exchange reactions and decreases when the HSAB principle indicates that hard/soft exchange reactions are unfavorable. This extends the previous work of the authors, which treated only the "double hard/soft exchange" reaction [P. K. Chattaraj and P. W. Ayers, J. Chem. Phys., 2005, 123, 086101]. We also discuss two different approaches to computing the hardness of molecules from the hardness of the composing fragments, and explain how the results differ. In the present context, it seems that the arithmetic mean of fragment softnesses is the preferable definition.  相似文献   

3.
Finite difference schemes, named Compact Finite Difference Schemes with Spectral-like Resolution, have been used for a less crude approximation of the analytical hardness definition as the second-order derivative of the energy with respect to the electron number. The improved computational schemes, at different levels of theory, have been used to calculate global hardness values of some probe bases, traditionally classified as hard and soft on the basis of their chemical behavior, and to investigate the quantitative applicability of the HSAB principle. Exchange acid-base reactions have been used to test the HSAB principle assuming the reaction energies as a measure of the stabilization of product adducts.  相似文献   

4.
The concept of hard and soft acids and bases (HSAB) proved to be useful for rationalizing stability constants of metal complexes. Its application to organic reactions, particularly ambident reactivity, has led to exotic blossoms. By attempting to rationalize all the observed regioselectivities by favorable soft-soft and hard-hard as well as unfavorable hard-soft interactions, older treatments of ambident reactivity, which correctly differentiated between thermodynamic and kinetic control as well as between different coordination states of ionic substrates, have been replaced. By ignoring conflicting experimental results and even referring to untraceable experimental data, the HSAB treatment of ambident reactivity has gained undeserved popularity. In this Review we demonstrate that the HSAB as well as the related Klopman-Salem model do not even correctly predict the behavior of the prototypes of ambident nucleophiles and, therefore, are rather misleading instead of useful guides. An alternative treatment of ambident reactivity based on Marcus theory will be presented.  相似文献   

5.
The ability to understand and predict ambident reactivity is key to the rational design of organic syntheses. An approach to understand trends in ambident reactivity is the hard and soft acids and bases (HSAB) principle. The recent controversy over the general validity of this principle prompted us to investigate the competing gas-phase SN2 reaction channels of archetypal ambident nucleophiles CN, OCN, and SCN with CH3Cl (SN2@C) and SiH3Cl (SN2@Si), using DFT calculations. Our combined analyses highlight the inability of the HSAB principle to correctly predict the reactivity trends of these simple, model reactions. Instead, we have successfully traced reactivity trends to the canonical orbital-interaction mechanism and the resulting nucleophile–substrate interaction energy. The HOMO–LUMO orbital interactions set the trend in both SN2@C and SN2@Si reactions. We provide simple rules for predicting the ambident reactivity of nucleophiles based on our Kohn–Sham molecular orbital analysis.  相似文献   

6.
A concept, complementary to that of hard and soft acid–base interactions (HSAB‐dominant chemisorption) and consistent with dominant physisorption to a semiconductor interface, is presented. We create a matrix of sensitivities and interactions with several basic gases. The concept, based on the reversible interaction of hard‐acid surfaces with soft bases, hard‐base surfaces with soft acids, or vice versa, corresponds 1) to the inverse of the HSAB concept and 2) to the selection of a combination of semiconductor interface and analyte materials, which can be used to direct a physisorbed vs chemisorbed interaction. The technology, implemented on nanopore coated porous silicon micropores, results in the coupling of acid–base chemistry with the depletion or enhancement of majority carriers in an extrinsic semiconductor. Using the inverse‐HSAB (IHSAB) concept, significant and predictable changes in interface sensitivity for a variety of gases can be implemented. Nanostructured metal oxide particle depositions provide selectivity and complement a highly efficient electrical contact to a porous silicon nanopore covered microporous interface. The application of small quantities (much less than a monolayer) of nanostructured metals, metal oxides, and catalysts which focus the physisorbtive and chemisorbtive interactions of the interface, can be made to create a range of notably higher sensitivities for reversible physisorption. This is exemplified by an approach to reversible, sensitive, and selective interface responses. Nanostructured metal oxides developed from electroless gold (AuxO), tin (SnO2), copper (CuxO), and nickel (NiO) depositions, nanoalumina, and nanotitania are used to demonstrate the IHSAB concept and provide for the detection of gases, including NH3, PH3, CO, NO, and H2S, in an array‐based format to the sub‐ppm level.  相似文献   

7.
Anthracenes bearing aliphatic or aromatic amino substituents, which behave as molecular sensors, have shown their potential to act as photon-induced electron-transfer (PET) systems. In this PET, the fluorophore moieties are responsible for electron release during protonation and deprotonation. The principle of hard and soft acids and bases (HSAB) deals with both intra- and intermolecular electron migration. It is possible to calculate the localized properties in terms of Fukui functions in the realm of density functional theory (DFT) and thus calculate and establish a numerical matchmaking procedure that will generate an a priori rule for choosing the fluorophore in terms of its activity. We calculated the localized properties for neutral, anionic, and cationic systems to trace the course of the efficiency. A qualitative scale is proposed in terms of the feasibility of intramolecular hydrogen bonding. To investigate the effect of the environment of the nitrogen atom on protonation going from mono- to diprotonated systems, we calculated the partial density of states and compared the activity sequence with reactivity indices. The results show that location of the nitrogen atom in an aromatic ring does not influence the PET, but for aliphatic chains it plays a role. Furthermore, the protonation/deprotonation scenario has been explained. The results show that the reactivity indices can be used as a suitable property for scaling the activity of fluorophore molecules for the PET process.  相似文献   

8.
Many chemical bonds of differing types and strengths have recently been regarded by Pearson[1] as representing partnerships between (Lewis) acids and (Lewis) bases. Most acceptor molecules or ions (acids) can be placed in one or other of two categories, graphically termed “Hard” and “Soft”. There are also two broad categories of donor molecules or ions (bases) which can also be termed Hard and Soft. On the whole, strong chemical bonds are partnerships between either a Hard base and a Hard acid or a Soft base and Soft acid, whereas weaker bond types most usually result in cases of either Hard base-Soft acid or Soft base-Hard acid interactions. The present paper shows how this concept of acidity and basicity can be applied in the interpretation of multi-center chemical reactions involving interconnected acid-base relationships. In particular, fourcenter substitutions and additions involving cooperative attack by nucleophiles and electrophiles at various chemical bonds have been examined, and a conclusion is reached that especially reactive patterns of reactants can be developed if the substrates contain bonds between either a hard acid and a soft base, or a soft acid and a hard base. Indeed, the arguments can be elaborated to provide two distinct Rules which should be of interest in the interpretation of metal-ion assisted reactions and in the design of novel syntheses.  相似文献   

9.
Reed JL 《Inorganic chemistry》2008,47(13):5591-5600
The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.  相似文献   

10.
11.
We have investigated the complexation behavior of preorganized 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) based ligands with trivalent lanthanides and actinides using density functional theory with various GGA type exchange-correlation functionals and different basis sets. New ligands have been designed from PDA through functionalization with soft donor atoms such as sulfur, resulting in mono-thio-dicarboxylic acids (TCA/TCA1) and di-thio-dicarboxylic acid (THIO). It has been found that selectivity in terms of complexation energy of actinides over lanthanides is the maximum with TCA1 where the metal-ligand binding is through the O atoms. This unusual feature where a softer actinide metal ion is bonded strongly with hard donor oxygen atoms has been explained using the popular chemical concepts, viz., Pearson's Hard-Soft-Acid-Base (HSAB) principle and the frontier orbital theory of chemical reactivity as proposed by Fukui. Detailed analysis within the framework of the HSAB principle indicates that the presence of softer nitrogen atoms in the phenanthroline moiety (which also act as donors to the metal ion) has a profound influence in changing the soft nature of the actinide ion, which in turn binds with the hard oxygen atoms in a stronger way as compared to the valence isoelectronic lanthanide ion. Also, the trends in the variation of calculated values of the metal-ligand bond distances and the corresponding complex formation energies have been rationalized using the Fukui reactivity indices corresponding to the metal ions and the donor sites. All the calculations have also been done in the presence of solvent. The "intra-ligand synergistic effect" demonstrated here for PDA or TCA1 with soft and hard donor centers might be very important in designing new ligands for selective extraction of various metal ions in a competitive environment. However, for TCA and THIO ligands with only soft donor centers, "intra-ligand synergism" may not be very efficient although reports are available demonstrating soft-soft inter-ligand synergism. Nevertheless, in the case of TCA and THIO complexes, a shorter Am-S bond distance in conjunction with lower metal ion charge and a higher percentage of orbital interaction energy corroborate the presence of a higher degree of covalency in Am-S bonds, which in turn may be responsible for selectivity towards Am(3+).  相似文献   

12.
阐述了SHAB规则,分类,酸碱软硬度的定量标度和理论解释。根据SHAB规则把体内微量元素分为Lewis硬酸,软酸与交界酸和硬碱,软碱与交界碱,体内不同体液和器官含有丰富的软硬配体,与各类软硬酸(金属离子)结合成不同稳定性的配合物,发挥其生物活性作用。  相似文献   

13.
The problem of intrinsic Lewis acidities of simple boron compounds (BH3-mXm, m = 0-3, X = F, Cl, Br, CH3, and OH) is assessed by their gas-phase hydride affinities (HAs). A simple and intuitively appealing picture of the interaction process including detachment of an electron from the hydride ion H-, capture of the pruned electron to the investigated Lewis acid (LA), and subsequent formation of the homolytic chemical bond between two newly created radicals is proposed. It enables transparent and straightforward dissection of the initial and final state effects, which taken together with the intermediate relaxation stabilization determine the trend of changes in the hydride affinities. The former effect is reflected in the electron affinities of the neutral Lewis acids given within Koopmans' approximation, while the final state effect involves properties of the formed Lewis acid-base adducts mirrored in the bond dissociation energy of the formed [LA-H]- chemical bond. It is demonstrated that unexpectedly low Lewis acidity of fluoroboranes relative to the corresponding chlorine and bromine derivatives can be traced down to the unfavorable Koopmans' electron affinities. Hence, it is a consequence of the initial state effect. In contrast, chloroboranes are more potent Lewis acids than fluoroboranes, because the relaxation and final state effects decisively influence their Lewis acidity. Finally, bromine-substituted borane compounds provide the most powerful studied Lewis acids. Their hydride affinities are result of a synergic interplay of the initial state, intermediate stabilization via relaxation, and final state effects. It is shown that Pearson's global hardness indices defined within his hard and soft acid-base (HSAB) principle fail to adequately predict and interpret the calculated hydride affinities.  相似文献   

14.
15.
Sodiumthiophenoxide and sodiumphenylselenide react with N-benzyl- and N-hexyl-di-p-toluenesulfonamides ( 1 and 2 ) via displacement at the C-atom to afford the corresponding organosulfides and selenides in yields of 68–96%. In contrast, sodium cyanide converts disulfonamides to monosulfonamides by attack on the S-atom. The different selectivities of phenylsulfide and selenide as compared to cyanide anions with respect to attack on the C- and S-atoms are rationalized on the grounds of the HSAB (hard and soft acids and bases) principle of Pearson.  相似文献   

16.
A rational approach in the design of selective mesoporous adsorbents   总被引:1,自引:0,他引:1  
Two MCM-41 derived adsorbents have been tailor-made for the separation of silver and copper ions using the hard-soft, acid-base (HSAB) principle as the design guideline. NH2-MCM-41 containing "hard" Lewis base adsorption sites (i.e., RNH2) was prepared for the adsorption of the "hard" Lewis acid, Cu2+, and SH-MCM-41 with a grafted "soft" thiolpropyl base was prepared for the selective removal of Ag+, a "soft" Lewis acid. Single- and binary-component adsorption studies were conducted at different metal concentrations, solution compositions, and pH values. The experimental results showed that SH-MCM-41 has excellent affinity and capacity for silver adsorption and adsorbed only the silver ions with copper remaining in the solution. The selectivity was not affected by the metal concentration and composition, anion, and pH. Under similar experimental conditions, NH2-MCM-41 selectively adsorbed copper from the binary solution. The selectivity of NH2-MCM-41 remained for the copper at different pH values, although the adsorption capacity diminished at lower pH values. The type of anions used affected copper adsorption on NH2-MCM-41 with an increased copper uptake in the presence of the sulfate ions. A simple Freundlich adsorption model was sufficient to describe metal adsorption on SH-MCM-41 and NH2-MCM-41, and the LeVan and Vermeulen model was successfully used to predict the adsorption capacity and selectivity for binary-component adsorptions.  相似文献   

17.
The principle of hard and soft acids and bases is interpreted as the result of two opposing tendencies, one related to the charge transfer process (chemical potential equalization principle), and the other one related to the reshuffling of the electronic density (maximum hardness or minimum softness principle). A local version of the principle is elucidated by assuming that these tendencies are dominated by the local properties rather than by the global properties of the molecule. This principle is used together with the Fukui function of the atoms in the molecule to characterize the reactive sites. The results presented for the nucleophilic addition to the pyridinium ion, and for the electrophilic substitution on pyridine oxide show the usefulness of these concepts in describing the inherent reactivity of chemical species.  相似文献   

18.
软硬酸碱原则在化学的各个领域都得到了广泛的应用。在其定量化标度方面也做了不少工作,例如Yingst等的酸度量|α/β|,Klopman的E_n~≠和E_m~≠值,parr和pearson的绝对硬度以及Yatsimirski的ΔA_(FH)等。但是,他们的工作在理论性和应用上都无法统一起来。本文提出一种具有广泛应用性的酸碱软硬度的键参数标度。Mulliken在研究一类弱lewis加合物的光谱时,首先用量子力学原理阐述了lewis  相似文献   

19.
Abstract

Analysis of the ionic solvent effect on acid-base equilibria allowed to divide them in two types distinguishing by the existence of ‘inner’ acid-base equilibrium and, consequently, by type of acid-base intervals. A consideration of some studies of ionic melts on the base of mixtures of AlCl3 and gallium halides with alkaline halides showed that the effect of melt composition (both cation and anion) on acid-base interval extent is described in the frames of ‘hard’ and ‘soft’ acids and bases (Pearson). Oxobasicity indices of molten mixtures containing alkaline and alkaline earth chlorides at 600 and 700°C are determined, the features of oxoacidity it certain melts are discussed.  相似文献   

20.
Wettability is one of the anisotropic surface properties of molecular crystals that exhibit the structural variance of chemical moieties on various growth faces. The divergence in liquid-solid interactions at different faces is thought to be related to the inherent responding capacity or sensitivity of a solid surface to the perturbation in electronic structures and atomic positions as a result of the contact by a liquid. Since the Fukui function, according to density functional theory (DFT), is a local function for describing such sensitivity to the structural perturbation and is directly related to local softness, it has been proposed and tested to use an integrated Fukui function over a crystallographic plane for describing the anisotropy of solid-liquid interactions. It is found that the contact angle of a polar solvent, such as water, on a crystal surface shows an intimate connection to the integrated Fukui functions of the surface, illustrating an extension of Pearson's HSAB (hard and soft acids and bases) to crystal systems. The concept of face-integrated Fukui function and the approach to apply the HSAB with the DFT-based concepts may provide a powerful means for describing anisotropic properties, including wettability of organic crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号