首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A method is proposed to get information about carrier distribution function in superlattices and multiple quantum-well structures from the analysis of the vertical transport experiments in a transverse magnetic field. The method was applied to the GaAs/AlGaAs superlattices with wide quantum wells in strong (B=0–7 T) magnetic fields. It was shown that the distribution function of electron is nonequilibrium Boltzmann-like, with electronic temperature T=10–20 K.  相似文献   

2.
Luminescence and luminescence excitation spectra are used to study the energy spectrum and binding energies of direct and spatially indirect excitons in GaAs/AlGaAs superlattices having different electron and hole miniband widths in high magnetic fields perpendicular to the heterolayers. The ground state of the indirect excitons formed by electrons and holes which are spatially distributed among neighboring quantum wells is found to lie between the ground 1s state of the direct excitons and the threshold of the continuum of dissociated exciton states in the minibands. The indirect excitons have a substantial oscillator strength when the binding energy of the exciton exceeds the scale of the width of the resulting miniband. It is shown that a high magnetic field shifts a system of symmetrically bound quantum wells toward weaker bonding. At high exciton concentrations, spatially indirect excitons are converted into direct excitons through exciton-exciton collisions. Fiz. Tverd. Tela (St. Petersburg) 40, 833–836 (May 1998)  相似文献   

3.
Luminescence and luminescence excitation spectra are used to study the energy spectrum and binding energies of direct and spatially indirect excitons in GaAs/AlaAs superlattices, with different widths of the electron and hole minibands, located in a high magnetic field perpendicular to the heterolayers. It is found that the ground state of the indirect excitons formed by electrons and holes and spatially separated between neighboring quantum wells lies between the ls ground state of the direct excitons and the continuum threshold for dissociated exciton states in the minibands. Indirect excitons in superlattices have a significant oscillator strength when the binding energy of the exciton exceeds the order of the width of the resulting miniband. The behavior of the binding energy of direct and indirect heavy hole excitons during changes in the tunneling coupling between the quantum wells is established. It is shown that a strong magnetic field, which intensifies the Coulomb interaction between the electron and hole in an exciton, weakens the bond in a system of symmetrically bound quantum wells. The spatially indirect excitons studied here are analogous to first order Wannier-Stark localized excitons in superlattices with inclined bands (when an electrical bias is applied), but in the present case the localization is of purely Coulomb origin. Zh. éksp. Teor. Fiz. 112, 1106–1118 (September 1997)  相似文献   

4.
5.
This study is devoted to the development of resonant-tunneling structures of quantum wells implementing resonant matching of lower subbands of size quantization in an electric field of the p-i-n junction of photovoltaic elements. The method for controlling the lower subband position in quantum wells by introducing a series of the tunnel-transparent barriers into a quantum well is proposed. The possibility of varying the level position in deep quantum wells in a wide range up to the continuous spectrum is demonstrated on a grown model structure; in this case, agreement between calculated and experimental subband positions is achieved.  相似文献   

6.
The dispersion of magnetoplasma excitations in two-dimensional electron systems in a strong parallel magnetic field has been studied. A considerable increase in the electron cyclotron mass with an increase in the parallel component of magnetic field has been detected. It has been found that the cyclotron mass increment is a quadratic function of the magnetic field parallel to the interface. It has been shown that the mass anisotropy of 2D electrons induced by the parallel magnetic field reaches nearly 2.5 in B = 7 T. The energy of space quantization of the electron in the quantum well has been estimated from the magnetic field dependence of the anisotropy.  相似文献   

7.
8.
The artificial random Gaussian-type potential built in the GaAs/AlGaAs superlattices grown by molecular beam epitaxy was explored by various methods. The effect of the intentional disorder was shown to dominate intrinsic superlattice imperfections and its impact on the electronic properties was found to be in good agreement with the theoretical predictions. It was demonstrated that the modern state of the molecular beam epitaxy allows for a growth of the superstructured materials with well-defined disorder strength.  相似文献   

9.
We theoretically analyze the tunneling of electrons through a heterostructure with two barriers and a quantum well between them in a magnetic field perpendicular to the current. We take into account the contribution from electrons with various positions of the magnetic oscillator center to the current. The region of the Z-shaped current-voltage characteristic for the heterostructure is shown to narrow as the magnetic field strengthens. Our analysis reveals a critical magnetic field strength at which the Z-shaped current-voltage characteristic transforms into an N-shaped one. We compare our results with experimental data.  相似文献   

10.
11.
12.
The phonon-plasmon interaction in tunneling GaAs n /AlAs m superlattices (m=5and 6≥n≥0.6 monolayers) was studied by Raman scattering spectroscopy. The interaction of optical phonons localized in GaAs and AlAs layers with quasi-three-dimensional plasmons strengthens as the thickness of GaAs quantum wells decreases and the electronic states in the superlattices become delocalized due to tunneling. It is assumed that the plasmons also interact with the TO-like phonon modes localized in quantum islands or in thin ruffled layers.  相似文献   

13.
14.
Electron injection through a tunnel barrier into a long period GaAs/AlGaAs superlattice is investigated. Seven negative differential resistance (NDR) regions are observed, resulting from resonant tunneling into the first well of the superlattice. Their positions can be quantitatively accounted for by considering the distribution of the electric field in the depletion region and the tunnel barrier. Upon application of a magnetic field parallel to the layers, the NDR's are shifted and weakened, which can be explained in terms of conservation of energy and canonical momentum. Furthermore, optical phonon generated conductance oscillations are observed although the depletion region is punctuated by the superlattice structure.  相似文献   

15.
Self-sustained oscillations of the current with a frequency ranging from 0.7 to 3.6 MHz have been detected in weakly coupled GaAs/AlGaAs superlattice at 4.2 K. A study of the static and dynamic characteristics of the structure showed that the spontaneous oscillations arise in the local region of the superlattice, restricted by a size of the domain boundary expansion. The oscillations arise in the negative differential conductivity regions due to the periodic coupling and decoupling of subbands in adjacent quantum wells, forming the expanded domain boundary. We suggest that the spatio-temporal oscillations of the domain boundary should be considered as oscillations of an ensemble of several strongly phase-coupled oscillators. Each oscillator is a couple of two adjacent quantum wells, which operates as a single resonant tunneling diode.  相似文献   

16.
17.
The mean free path of ballistic electrons in GaAs/AlGaAs superlattices was measured using the technique of hot electron spectroscopy in magnetic fields perpendicular to the growth direction. We utilize the fact that the total effective path of an injected hot electron is a function of the applied magnetic field. For a superlattice with 6.5 nm GaAs wells and 2.5 nm GaAlAs barriers we measure a mean free path of 80 nm. The experimental results of a ten-period SL sample are compared to a fully three-dimensional calculation of the transmission including interface roughness with island sizes of 10 nm. We demonstrate that the observed mfp is limited due to interface roughness scattering for temperatures up to 50 K.  相似文献   

18.
We study the resonant magnetopolaron effects in parabolic quantum wells in a tilted magnetic field. The renormalization of the first excited level, which is resonant with the ground state level plus one longitudinal-optical phonon is calculated at the resonance using an improved resonance approximation to be E= where is the polaron coupling constant. The exponent and the factor are calculated in dependence on the tilt angle of the magnetic field and the confinement energy.  相似文献   

19.
A detailed experimental study of electron cyclotron resonance (CR) has been carried out at 4.2 K in three modulation-doped GaAs/Al0.3Ga0.7As multiple quantum well samples in fields up to 30 T. A strong avoided-level-crossing splitting of the CR energies due to resonant magnetopolaron effects is observed for all samples near the GaAs reststrahlen region. Resonant splittings in the region of AlAs-like interface phonon modes of the barriers are observed in two samples with narrower well width and smaller doping concentration. The interaction between electrons and the AlAs interface optical phonon modes has been calculated for our specific sample structures in the framework of the memory-function formalism. The calculated results are in good agreement with the experimental results, which confirms our assignment of the observed splitting near the AlAs-like phonon region is due to the resonant magnetopolaron interaction of electrons in the wells with AlAs-like interface phonons.  相似文献   

20.
The ratio of the densities of intra-and interwell excitons in a symmetric system of coupled quantum wells — a superlattice based on a GaAs/AlGaAs heterostructure — is investigated over a wide range of optical excitation power densities. Conversion of interwell excitons into intrawell excitons as a result of exciton-exciton collisions is observed at high exciton densities. Direct evidence for such a conversion mechanism is the square-root dependence of the interwell exciton density on the optical excitation level. The decrease in the lifetime of interwell excitons with increasing excitation density, as measured directly by time-resolved spectroscopy methods, confirms the explanation proposed for the effect. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 8, 623–628 (25 April 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号