首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phosphors NaGdFPO4:Ln3+ and GdPO4:Ln3+ (for Ln3+=Ce3+ and Tb3+) were prepared by solid-state reaction technique, the VUV-vis spectroscopic properties of the phosphors were investigated, and we vividly compare the luminescence of Ce3+ and Tb3+ in the hosts. For phosphors GdPO4:Ln3+, the band near 155 nm in VUV excitation spectrum is assumed to be the host-related absorption, and for NaGdFPO4:Ln3+ the absorption is moved to longer wavelength, near 170 nm, showing the P-O bond covalency increased after fluoridation. The f-d transitions of Ce3+ and Tb3+ in the host lattices are assigned and corroborated, and it was found that the 5d states are with lower energy in NaGdFPO4:Ln3+ than those in GdPO4:Ln3+. For fluoridation of GdPO4:Ln3+ to NaGdFPO4:Ln3+, the energy change of Ln3+ (Ln=Ce, Tb) 5d states is consistent with that of host-related absorption.  相似文献   

2.
Spherical SiO2 particles have been coated with rare earth oxide layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO2@RE2O3 (RE=rare earth elements) and SiO2@Gd2O3:Ln3+ (Ln=Eu, Tb, Dy, Sm, Er, Ho) particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL), and cathodoluminescence spectra as well as lifetimes were used to characterize the resulting SiO2@RE2O3 (RE=rare earth elements) and SiO2@Gd2O3:Ln3+ (Eu3+, Tb3+, Dy3+, Sm3+, Er3+, Ho3+) samples. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 380 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (40 nm for two deposition cycles). Under the excitation of ultraviolet, the Ln3+ ion mainly shows its characteristic emissions in the core-shell particles from Gd2O3:Ln3+ (Eu3+, Tb3+, Sm3+, Dy3+, Er3+, Ho3+) shells.  相似文献   

3.
The spectroscopic properties in VUV-Vis range for the eulytite structural phosphors Sr3Gd(PO4)3:Ln3+ (Ln3+=Ce3+, Pr3+, Tb3+), Sr3Ce(PO4)3, Sr3Gd(PO4)3 and Sr3Tb(PO4)3 were investigated. The bands near 170 nm in VUV excitation spectra are assumed to connect with the host lattices related absorption. The f-d transitions of Ce3+, Pr3+ and Tb3+ in the host lattices are assigned and corroborated. A convenient experiment formulation on the relationship between the lowest f-d transition energies and n value for trivalent 4fn-series rare earth ions in these host lattices is applied.  相似文献   

4.
A surfactant-free aqueous solution route has been established for the synthesis of LaF3:Ln3+/LaF3 core/shell nanocrystals (Ln=Ce, Tb, Nd) heated at 75 °C at ambient pressure. All the as-prepared nanocrystals with spherical shape have an average size around 20 nm, and consist of well crystallized hexagonal phases. The X-ray photoelectron spectra was used to confirm that the LaF3 shells have coated the LaF3:Ce3+, Tb3+ cores. Compared with that of the original cores under the same conditions, the emission intensity of the LaF3:Ce3+, Tb3+/LaF3 and LaF3:Nd3+/LaF3 core/shell nanocrystals increased significantly of 120% and 60%, respectively. The quantum yield of the LaF3:Ce3+, Tb3+/LaF3 core/shell nanocrystals reached about 27% in aqueous solution. These results indicate that a significant reduction of the quenching from the surface of the core nanocrystals can be obtained by the synthesis of the core/shell structures, and this method can provide more desirable lanthanide-doped nanocrystals for potential biological applications.  相似文献   

5.
采用水热法制备出Ca9Y(PO47:Ce3+,Tb3+纳米荧光粉,通过XRD、SEM和荧光光谱等对样品进行了分析,研究在Ca9Y(PO47基质中引入Ce3+,Tb3+离子对发光性能的影响规律。研究发现因Tb3+离子自身能量交叉驰豫的存在,使得单掺Tb3+时,通过调节Tb3+离子的浓度可以实现对发光颜色的控制。同时研究了Ce3+-Tb3+之间的能量传递为电多极相互作用的偶极-四极机制,Ce3+-Tb3+之间最大的能量传递效率为55.6%。Ca9Y(PO47:Ce3+,Tb3+的发光颜色可以通过激活离子之间的能量传递和共发射得到可控调节。SEM分析表明荧光粉颗粒尺寸在100 nm左右,分散性好。  相似文献   

6.
采用sol-gel法合成了系列发光体Li2O-Ln2O3-SiO2:Eu^3^+,Bi^3^+,并确定了发光体的物相结构。当Ln^3^+=Y^3^+和Ln^3^+=La^3^+时,紫外光激发下Eu^3^+的发射分别以红光和橙光为主,只存在一种Eu^3^+发光中心;Ln^3^+=Gd^3^+时,至少存在两种Eu^3^+发光中心和两种Bi^3^+发光中心(共掺杂Eu^3^+,Bi^3^+的吸收和发射所  相似文献   

7.
Luminescence emission and uv-excitation properties of LaOBr: Tb3+, LaOBr: Ce3+, and LaOBr: Tb3+, Ce3+ phosphors were studied. The visible emission spectra of La0.995Tb0.005OBr consists of5D3,47F3–6 transitions in the wavelength range of 410–630 nm. The excitation of the Tb3+ ion gives a broad 4f → 5d transition band at 254 nm and weaker4f → 4f transition lines above 300 nm. The uv-excitation and emission of La0.995Ce0.005OBr at 290, 315, 355 (excitation), and 440 nm (emission) originate from transitions between the 4f-ground state and the four crystal field components of the5d2D excited state. The sensitization of Tb3+ luminescence in LaOBr with Ce3+ at varying concentrations is described and discussed. With increasing Ce3+ concentration the 5D37F transitions of Tb3+ quench totally and the5D47F transitions begin to quench gradually. The excitation spectrum of the5D47F5 transition of Tb3+ consists of four bands due to Tb3+ and Ce3+, of which the three Ce3+ bands increase in intensity and the Tb3+ band decreases as the Ce3+ concentration is increased.  相似文献   

8.
A systematic study of microstructure and photocatalytic properties of lanthanide doping of nanocrystalline mesoporous titanium dioxide is performed. The anatase-to-rutile (A-R) phase transformation of nanosized TiO2 was significantly inhibited by lanthanide doping and the inhibitory effect was enhanced with the increase of the rare earth radius, i.e., La3+>Gd3+>Yb3+ for different lanthanide dopants. At high calcination temperatures, different texture lanthanide titanium oxides of Ln4Ti9O24 (La3+, Pr3+, Nd3+), Ln2Ti2O7 (Eu3+, Gd3+, Tb3+, Dy3+, Er3+), and Yb2TiO5 were developed, respectively, revealing that the structures of lanthanide titanium oxide developed in Ln/TiO2 depend on the lanthanide radius. Larger radius lanthanides prefer to form higher coordination number lanthanide titanium oxide. In addition, the thermal stability of mesoporous structures of TiO2 was remarkable improved by lanthanide doping. The photocatalytic properties were studied by employing the photodegradation of Rhodamine B (RB) as a probe reaction. The results indicate that the lanthanide doping could bring about significant improvement to the photoreactivity of TiO2, and the improvement was sensitive to the atomic electronic configuration.  相似文献   

9.
The crystal and electronic structures, and luminescence properties of Eu2+, Ce3+ and Tb3+ activated LiSi2N3 are reported. LiSi2N3 is an insulator with an indirect band gap of about 5.0 eV (experimental value ∼6.4 eV) and the Li 2s, 2p states are positioned on the top of the valence band close to the Fermi level and the bottom of the conduction band. The solubility of Eu2+ is significantly higher than Ce3+ and Tb3+ in LiSi2N3 which may be strongly related to the valence difference between Li+ and rare-earth ions. LiSi2N3:Eu2+ shows yellow emission at about 580 nm due to the 4f65d1→4f7 transition of Eu2+. Double substitution is found to be the effective ways to improve the luminescence efficiency of LiSi2N3:Eu2+, especially for the partial replacement of (LiSi)5+ with (CaAl)5+, which gives red emission at 620 nm, showing highly promising applications in white LEDs. LiSi2N3:Ce3+ emits blue light at about 450 nm arising from the 5d1→4f15d0 transition of Ce3+ upon excitation at 320 nm. LiSi2N3:Tb3+ gives strong green line emission with a maximum peak at about 542 nm attributed to the 5D47FJ (J=3-6) transition of Tb3+, which is caused by highly efficient energy transfer from the LiSi2N3 host to the Tb3+ ions.  相似文献   

10.
The conditions of a Ce3+ → Tb3+ energy transfer have been analyzed in the Na2+x+yCa2(1?x?y) CexTby(PO4)2 orthophosphates. Terbium green emission through uv cerium excitation is characterized by a very low yield. This result is the consequence of a sodium-rare-earth short range ordering even at low rare-earth concentrations and of lack of rigidity in the anionic sublattice.  相似文献   

11.
Rare earth ions (Ce3+, Tb3+)-doped LaMgAl11O19 phosphor films were deposited on quartz glass substrates by Pechini sol-gel and dip coating method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM), field emission scanning electronic microscopy (FESEM), photoluminescence (PL) spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the magnetoplumbite structure LaMgAl11O19 phase can be obtained at 1200 °C on quartz glass substrates. This was further verified by the results of FT-IR and TG-DTA. AFM study showed that uniform films have an average grain size of 150 nm and a root mean square (RMS) roughness of 4 nm. The thickness of the films characterized by FESEM is about 340 nm. LaMgAl11O19:Ce3+ film showed the parity and spin allowed 5d-4f band emission of Ce3+ with a maximum at 350 nm. Ce3+, Tb3+-codoped LaMgAl11O19 films showed the band emission of Ce3+ and characteristic emission of Tb3+, namely, 5D3,4-7FJ (J=6, 5, 4, 3) due to an efficient energy transfer from Ce3+ to Tb3+ in the host.  相似文献   

12.
Ce3+ and/or Tb3+ doped LaPO4 nanofibers and microbelts have been prepared by a combination method of sol-gel process and electrospinning. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), low voltage cathodoluminescence (CL) and time-resolved emission spectra as well as kinetic decays were used to characterize the resulting samples. SEM and TEM results indicate the as-formed precursor fibers and belts are smooth, and the as-prepared nanofibers and microbelts consist of nanoparticles. The doped rare-earth ions show their characteristic emission under ultraviolet excitation, i.e. Ce3+ 5d-4f and Tb3+5D4-7FJ (J=6-3) transitions, respectively. The energy transfer process from Ce3+ to Tb3+ in LaPO4:Ce3+, Tb3+ nanofibers was further studied by the time-resolved emission spectra. Under low-voltage electron beam excitation, LaPO4:Ce3+, Tb3+ microbelt phosphors have a higher intensity than that of nanofiber phosphors.  相似文献   

13.
A series of head-on complexes of lanthanoid containing germanotungstates was isolated from a one pot reaction in an acetate buffer at pH 4.5. This convenient approach brought forward the [{Ln(CH3COO)GeW11O39(H2O)}2]12− (Ln=EuIII, GdIII, TbIII, DyIII, HoIII, ErIII, TmIII, and YbIII) family with acetate chelators in the rarely observed μ2: η2-η1 mode. All compounds were structurally characterized using various solid state analytics, such as single crystal X-ray diffraction, FT-IR spectroscopy, and thermogravimetric analysis. The isostructural polyanions crystallize in the monoclinic system (S.G. P21/c). Temperature-dependent magnetic susceptibility measurements were performed on the GdIII-complex which exhibits near perfect Curie-type behavior.  相似文献   

14.
Use of Nd3+, Eu3+, and Gd3+ as local structural probes allows the determination of the rare earth positions in the NaxSr3?2xLnx(PO4)2 (Ln = La to Tb) and KCaLn(PO4)2 phases (Ln = rare earth). Moreover, a common feature of both series is a particularly high splitting of the excitation 6P72 and 6P52 levels of the Gd3+ ions.  相似文献   

15.
New LnxBi2–xSe3 (Ln: Sm3+, Eu3+, Gd3+, Tb3+) based nanomaterials were synthesized by a co‐reduction method. Powder XRD patterns indicate that the LnxBi2–xSe3 crystals (Ln = Sm3+, Eu3+, x = 0.00–0.44 and Ln = Gd3+, Tb3+, x = 0.00–0.50) are isostructural with Bi2Se3. The cell parameter c decreases for Ln = Eu3+, Gd3+, Tb3+ upon increasing the dopant content (x), while a slightly increases. Changes in lattice parameters could be related to the radii of cations. SEM images show that doping of the lanthanide ions in the lattice of Bi2Se3 generally results in nanoflowers. For the terbium compound two kinds of morphologies (nanoflowers and nanobelts) were observed. UV/Vis absorption and emission spectroscopy reveals mainly electronic transitions of the Ln3+ ions. Emission spectra show intense transitions from the excited to the ground state of Ln3+ and energy transfer from the Bi2Se3 lattice. Emission spectra of europium‐doped materials, in addition to the characteristic red emission peaks of Eu3+, show an intense blue emission band centered at 432 nm, originating from the 4f65d1 to 4f7 configuration in Eu2+. EPR measurements confirm the existence of Eu2+ in the materials. Interestingly, for all samples starting at low Ln3+ concentration, the emission intensity rises to a maximum at a Ln3+ concentration of x = 0.2 and falls again steadily to a minimum at x = 0.45.  相似文献   

16.
We present an efficient way to search a host for ultraviolet (UV) phosphor from UV nonlinear optical (NLO) materials. With the guidance, Na3La2(BO3)3 (NLBO), as a promising NLO material with a broad transparency range and high damage threshold, was adopted as a host material for the first time. The lanthanide ions (Tb3+ and Eu3+)-doped NLBO phosphors have been synthesized by solid-state reaction. Luminescent properties of the Ln-doped (Ln=Tb3+, Eu3+) sodium lanthanum borate were investigated under UV ray excitation. The emission spectrum was employed to probe the local environments of Eu3+ ions in NLBO crystal. For red phosphor, NLBO:Eu, the measured dominating emission peak was at 613 nm, which is attributed to 5D0-7F2 transition of Eu3+. The luminescence indicates that the local symmetry of Eu3+ in NLBO crystal lattice has no inversion center. Optimum Eu3+ concentration of NLBO:Eu3+ under UV excitation with 395 nm wavelength is about 30 mol%. The green phosphor, NLBO:Tb, showed bright green emission at 543 with 252 nm excited light. The measured concentration quenching curve demonstrated that the maximum concentration of Tb3+ in NLBO was about 20%. The luminescence mechanism of Ln-doped NLBO (Tb3+ and Eu3+) was analyzed. The relative high quenching concentration was also discussed.  相似文献   

17.
Gd2Zr2O7中Gd具有很大的中子吸收截面, 其烧绿石结构-缺陷萤石结构的转变能较低, 使其成为理想的核废料固化基材. 使用硝酸盐为原料, 添加少量NaF作助熔剂, 在较低温度下(和传统高温固相反应相比), 合成了烧绿石型Gd2Zr2O7. 以Ce4+模拟Pu4+, 研究了Gd2Zr2O7对锕系核素的固化, 并合成了系列模拟固化体(Gd1-xCex)2Zr2O7+x (0≤x≤0.6). 采用粉末X射线衍射(XRD)对系列样品进行了表征. 结果表明: 随着x值的增大,样品从烧绿石结构向缺陷萤石结构转变, 且晶胞大小基本保持恒定, 但当x=0.6时, 衍射峰明显宽化, 晶格畸变比较严重, 晶格稳定性降低. 当x=1时, 即用Ce4+完全取代Gd3+进行合成, 不能得到Ce2Zr2O8, 产物发生了相分离, 为四方结构的(Zr0.88Ce0.12)O2和萤石结构的(Ce0.75Zr0.25)O2的混合物. 模拟固化体的浸出率测试表明: 当x≤0.2时, 各元素浸出率均很低, 但当x≥0.4时, 各元素的浸出率明显升高, 说明以Gd2Zr2O7作为固化Pu4+的基材, Pu4+掺入量不宜高于40%.  相似文献   

18.
Undoped and RE ions doped SrB2Si2O8 were successfully synthesized. After the application of UV and VUV spectroscopy measurements, we made a novel discovery that the emission of SrB2Si2O8:Eu prepared in air can be switched between red and blue by the different excitations. The information is that quite a part of Eu3+ was spontaneously reduced to Eu2+ in air. The PL properties of Eu2+ in VUV and Eu3+, Ce3+ and Tb3+ in UV-VUV region in SrB2Si2O8 were evaluated for the first time. The excitation mechanisms of the O2−-Eu3+ CT, Ce3+f-d and Tb3+f-d transitions in UV region as well as the Eu3+f-d, O2−-Ce3+ CT, O2−-Tb3+ CT transitions and the host lattice absorption in VUV region were established. In addition, first principles calculation within the LDA of the DFT was applied to calculate the electronic structure and linear optical properties of SrB2Si2O8 and the results were compared with the experimental data.  相似文献   

19.
Monodisperse rare-earth ion (Eu3+, Ce3+, Tb3+) doped LaPO4 particles with oval morphology were successfully prepared through a facile solvothermal process without further heat treatment. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra and the kinetic decays were performed to characterize these samples. The XRD results reveal that all the doped samples are well crystalline at 180 °C and assigned to the monoclinic monazite-type structure of the LaPO4 phase. It has been shown that all the as-synthesized samples show perfectly oval morphology with narrow size distribution. The possible growth mechanism of the LaPO4:Ln has been investigated as well. Upon excitation by ultraviolet radiation, the LaPO4:Eu3+ phosphors show the characteristic 5D07F1-4 emission lines of Eu3+, while the LaPO4:Ce3+, Tb3+ phosphors demonstrate the characteristic 5D47F3-6 emission lines of Tb3+.  相似文献   

20.
The cell constants of four new monoclinic compounds BaR4X5O17 (R = Y, Gd; X = Si, Ge) are given. The luminescence of various RE activators in the silicates is reported. Pr3+-activated BaY4Si5O17 shows efficient ultraviolet 5d → 4f emission and weak 4f → 4f emission (mainly red luminescence from the 1D2 level). The 5d → 4f emission is ascribed to Pr3+ on Y sites, the 4f → 4f emission to Pr3+ on Ba sites. Energy transfer from Pr3+ to Gd3+ has been observed. Gd3+ plays an intermediate role in the energy transfer from Pr3+ to Sm3+ and to Dy3+ in BaGd4Si5O17. Upon activation with Tb3+ the silicates show characteristic green Tb3+ luminescence with a quantum efficiency of 75% for ultraviolet excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号