首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mesoporous silica-based hybrid material composed of silica xerogel modified with an ionic silsesquioxane, which contains the 1,4-diazoniabicyclo[2.2.2]octane chloride group, was obtained. The silsesquioxane film is highly dispersed on the surface. This hybrid material was utilized to develop a carbon paste electrode (CPE) for determination of methyl parathion. Transmission FTIR, elemental analysis and N2 adsorption–desorption isotherms were used for characterization of the material. The electrochemical behavior of methyl parathion was evaluated by cyclic voltammetry and differential pulse voltammetry. It was observed a linear response to methyl parathion in the concentration range from 1.25 × 10?7 to 2.56 × 10?6 mol L?1 by employing the carbon paste electrode, in Britton–Robinson buffer solution (pH 6). The achieved detection limit (3 SD of the blank divided by the slope of calibration curve) was 0.013 µmol L?1 and sensitivity was 6.3 µA µmol L?1. This result shows the potentiality of this electrode for application as electrochemical sensor for methyl parathion.  相似文献   

2.
A novel platform for electroanalysis of isoniazid based on graphene-functionalized multi-walled carbon nanotube as support for iron phthalocyanine (FePc/f-MWCNT) has been developed. The FePc/f-MWCNT composite has been dropped on glassy carbon forming FePc/f-MWCNT/GC electrode, which is sensible for isoniazid, decreasing substantially its oxidation potential to +200 mV vs Ag/AgCl. Electrochemical and electroanalytical properties of the FePc/f-MWCNT/GC-modified electrode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electrochemical microscopy, and amperometry. The sensor presents better performance in 0.1 mol L?1 phosphate buffer at pH 7.4. Under optimized conditions, a linear response range from 5 to 476 μmol L?1 was obtained with a limit of detection and sensitivity of 0.56 μmol L?1 and 0.023 μA L μmol?1, respectively. The relative standard deviation for 10 determinations of 100 μmol L?1 isoniazid was 2.5%. The sensor was successfully applied for isoniazid selective determination in simulated body fluids.  相似文献   

3.
《Analytical letters》2012,45(2):248-258
A poly(diallyldimethylammonium chloride)-graphene-multiwalled carbon nanotube modified glassy carbon electrode was fabricated and evaluated by cyclic voltammetry and differential pulse voltammetry. The modified electrode offered high sensitivity, selectivity, excellent long-term stability, and electrocatalytic activity for uric acid and dopamine. This sensor showed wide linear dynamic ranges of 5.0 to 350.0 µmol L?1 for uric acid and 10.0 to 400.0 µmol L?1 for dopamine in the presence of 500 µmol L?1 ascorbic acid. The limits of detection were 0.13 for uric acid and 0.55 µmol L?1 for dopamine. This functionalized electrode has potential application in bioanalysis and biomedicine.  相似文献   

4.
In this work, a glassy carbon electrode (GCE) modified with poly (diphenylamine)/multi-walled carbon nanotubes-β-cyclodextrin (PDPA/MWCNT-β-CD) film was constructed and used for the determination of 4-nitrophenol (4-NP). Diphenylamine was successfully electropolymerised onto MWCNT-β-CD-modified GCE by cyclic voltammetry in monomer solution and 5 mol L?1 H2SO4. The surface morphology of PDPA/MWCNT-β-CD film was characterised using scanning electron microscopy and electrochemical impedance spectroscopy. After adsorption of 4-NP on PDPA/MWCNT-β-CD at 0.2 V for 150 s, it showed a well-defined reduction peak in phosphate buffer solution at pH = 7. The PDPA/MWCNT-β-CD film enhanced the reduction peak current due to the complex formation between β-CD and 4-NP, presence of conductive polymer film as electron transfer mediator and also ability of MWCNTs for strong adsorptive and catalytic effect. Peak current increased linearly with 4-NP concentration in the range of 0.1 to 13.9 µg L?1. The detection limit was obtained as 0.02 µg L?1, which is better than other reported detection limits for the determination of 4-NP. The results showed that modified electrode has good sensitivity and selectivity. This sensor was used for the determination of 4-NP in water samples.  相似文献   

5.
A self-assembled sensor based on a boron-doped diamond was investigated as a sensitive tool for voltammetric analysis of a member of a pyridine herbicide family - picloram. A cyclic voltammetry and a differential pulse voltammetry were applied for investigation of the voltammetric behaviour and quantification of this herbicide. Picloram yielded one well-developed irreversible oxidation signal at a very positive potential about +1.5 V vs. Ag/AgCl/3 mol L?1 KCl electrode in an acidic medium and 1 mol L?1 H2SO4 was chosen as a suitable supporting electrolyte. Operating parameters of differential pulse voltammetry were optimized and the proposed voltammetric method provided a high repeatability (a relative standard deviation of 20 repeated measurements at a concentration level of picloram of 50 µmol L?1 equaled to 2.58%), a linear concentration range from 2.5 to 90.9 µmol L?1 and a low limit of detection (LD = 1.64 µmol L?1). Practical usefulness of the ‘environmentally-green’ electrochemical sensor was verified by an analysis of spiked water samples with satisfactory recoveries.  相似文献   

6.
A simple but highly sensitive electrochemical sensor for the determination of 8-azaguanine based on graphene-Nafion nanocomposite film-modified glassy carbon electrode (G-Nafion/GCE) was reported. The electrochemical behaviors of 8-azaguanine at G-Nafion/GCE were investigated by cyclic voltammetry (CV), square wave voltammetry (SWV), chronoamperometry (CA), and chronocoulometry (CC). The results showed that the electrochemical sensor exhibited excellent electrocatalytic activity to 8-azaguanine. 8-Azaguanine can be effectively accumulated at G-Nafion/GCE and produce a sensitive anodic peak, due to the synergetic functions of graphene and Nafion. Under the selected conditions, the modified electrode in pH 1.98 Britton-Robinson buffer solution showed a linear voltammetric response to 8-azaguanine within the concentration range of 5.0 × 10?8~3.0 × 10?5 mol L?1, with the detection limit of 1.0 × 10?8 mol L?1. And, the method was also applied to detect 8-azaguanine in spiked human urine with wonderful satisfactory results.  相似文献   

7.
A voltammetric sensor was fabricated by applying a Nafion and multi-walled carbon nanotubes (MWCNTs) composite film on the surface of a carbon ionic liquid electrode (CILE), which was prepared by mixing 1-butyl-3-methylimidazolium hexafluorophosphate with graphite powder. The electrochemical behavior of adenine on the Nafion-MWCNTs/CILE was investigated in pH 5.5 buffer solution. Adenine showed an irreversible adsorption-controlled oxidation reaction with enhanced electrochemical response, which was due to the presence of high conductive MWCNTs on the CILE surface. The electrochemical parameters of adenine electro-oxidation were determined, and the experimental conditions were optimized. Under the optimal conditions, the oxidation peak current was linear to the adenine concentration over the range of 1.0?×?10?7 to 7.0?×?10?5 mol L?1 with a detection limit of 3.3?×?10?8 mol L?1 (signal/noise?=?3). The electrode showed good stability and selectivity, and was further applied to milk powder samples with satisfactory results.  相似文献   

8.
This work describes the use of organosmectite modified electrode to evaluate the electrochemical behaviour and to develop an electroanalytical procedure for the determination of methyl orange (MO) dye in natural water. Organosmectites were prepared by intercalation of hexadecyltrimethylammonium cations at various ratios into the interlayer of smectite. The synthesised organosmectites were characterised by various physicochemical techniques such as Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. An amperometric sensor based on organosmectite as electrode modifier for MO sensing purposes was then evaluated by means of clay-film modified electrode using square wave voltammetry (SWV). The electrochemical procedure for MO analysis by stripping voltammetry involves two successive steps: accumulation of MO at open circuit conditions followed by a voltammetric detection in a same medium by the SWV technique. The peak current obtained (after 5 min preconcentration of 15 µmol L?1 MO solution) on a glassy carbon electrode coated by a thin film of the modified clay was more than 2.5 times higher than that exhibited by the same substrate covered by a film of the pristine clay. Under optimised conditions, a linear calibration curve for MO was obtained in the concentration range from 0.1 to 1.6 µmol L?1, leading to a detection limit of 4 × 10?8 mol L?1 (signal-to-noise ratio equal to 3). The interfering effect of various inorganic and organic ions likely to influence the stripping determination of the MO was also examined. To further validate application of this sensor, the proposed method was successfully used to the determination of MO in natural water with satisfactory results.  相似文献   

9.
Imipramine (IMP), a tricyclic antidepressant drug, is commonly prescribed for treatment of psychiatric patients suffering from different forms of depression. The appropriate amount of drug intake is crucial to ensure the optimum therapeutic effects minimizing severe collateral effects and toxicity. Therefore, the monitoring of imipramine is essential for its clinical applications. Herein, we report an electrochemical sensor based on a composite of ferrocenecarboxylic acid (FCA), β-cyclodextrin (CD), and oxidized multi-walled carbon nanotubes (f-CNT) modified glassy carbon electrode for detection of IMP at low potential. The electrochemical behavior of the proposed sensor was characterized by scanning electron microscopy, Raman spectroscopy, and cyclic voltammetry. The results show that imipramine determination using the proposed sensor occurs around 0 V vs Ag/AgCl in phosphate buffer pH 7.0. The calibration curves were obtained by cyclic voltammetry and differential pulse voltammetry, with linear ranges of 10 to 350 μmol L?1 and 0.1 to 10 μmol L?1, respectively. A detection limit of 0.03 μmol L?1 was obtained for the detection of IMP. The sensor was applied for IMP determination in psychotropic drugs and urine samples and the results show a recovery percentage between 99 and 101% for the analyte.  相似文献   

10.
Monolayers of 2-mercapto-5-methylbenzimidazole (MMB) were prepared on a polycrystalline gold electrode via a self-assembly process to produce a self-assembled monolayer. The resulting electrode was investigated by cyclic voltammetry and electrochemical impedance spectroscopy, and applied to the determination of chloramphenicol (CAP) in a pharmaceutical formulation using flow injection analysis along with amperometric detection. The amperometric cell was operated at ?0.75 V (vs Ag/AgCl) at a flow rate of 3 mL min?1. The method was applied to the determination of CAP in ophthalmic solutions, and its performance was compared to a previously validated HPLC method. The response to CAP is linear in the range from 0.050 to 1.000 µmol L?1 (r?=?0.9990), and the limit of detection is 44 µmol L?1.  相似文献   

11.
A sensitive and selective imprinted electrochemical sensor for the determination of aflatoxin B1 (AFB1) was constructed on a glassy carbon electrode by stepwise modification of functional multiwalled carbon nanotubes (MCNTs), Au/Pt bimetallic nanoparticles (Au/PtNPs), and a thin imprinted film. The fabrication of a homogeneous porous poly o-phenylenediamine (POPD)-grafted Au/Pt bimetallic multiwalled carbon nanotubes nanocomposite film was conducted by controllable electrodepositing technology. The sensitivity of the sensor was improved greatly because of the nanocomposite functional layer; the proposed sensor exhibited excellent selectivity toward AFB1 owing to the porous molecular imprinted polymer (MIP) film. The surface morphologies of the modified electrodes were characterized using a scanning electron microscope. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. A linear relationship between the sensor response signal and the logarithm of AFB1 concentrations ranging from 1?×?10?10 to 1?×?10?5 mol L?1 was obtained with a detection limit of 0.03 nmol L?1. It was applied to detect AFB1 in hogwash oil successfully.  相似文献   

12.
A novel sensor for detection of trace gallium ion [Ga(III)] was created by stepwise modification of a gold electrode with β‐cyclodextrin (β‐CD)/multi‐walled carbon nanotubes (MWCNTs) and an ion imprinted polymer (IIP). The sensor surface morphology was characterized by scanning electron microscopy. The electrochemical performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The sensor displayed excellent selectivity towards the target Ga(III) ion. Meanwhile, the introduced MWCNTs displayed noticeable catalytic activity, and β‐CD demonstrated significant enrichment capacity. A linear calibration curve was obtained covering the concentration range from 5.0×10?8 to 1.0×10?4 mol·L?1, with a detection limit of 7.6×10?9 mol·L?1. The proposed sensor was successfully applied to detect Ga(III) in real urine samples.  相似文献   

13.
《Analytical letters》2012,45(8):883-893
A multi-wall carbon nanotubes (MWNTs) and cobalt(II) tetrakisphenylporphyrin (Co(II)TPP) modified glassy carbon electrode (MWNTs/Co(II)TPP/GCE) has been prepared. It can be used for individual or simultaneous determination of hydroquinone (HQ) and catechol (CC). The anodic peaks of HQ and CC can be separated well. Owing to the unique properties of MWNTs and special synergistic effect of MWNTs and Co(II)TPP, the modified electrode exhibited a remarkable and stable current response for CC and HQ. The linear ranges for CC and HQ were 1.0–450.0 µmol L?1 and 0.8–400.0 µmol L?1 with detection limits of 0.8 µmol L?1 and 0.5 µmol L?1, respectively. Furthermore, Co(II)TPP, MWNTs, and Co(II)TPP/MWNTs composite were also used to construct modified electrodes and the electrochemical performances were studied.  相似文献   

14.
In this work, thionine (Th) was assembled on the surface of graphene oxide as an electron transfer mediator using diazonium reaction (Th–GO). Then, Th–GO was characterized by different methods such as scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. Afterward, Th–GO was used for the modification of carbon paste electrode. Several electrochemical methods including cyclic voltammetry, differential pulse voltammetry, and hydrodynamic amperometry were used to investigate the behavior of the modified electrode. Then, the role of the modified electrode for oxidation of nitrite has been studied. For this purpose, the effect of critical experimental parameters including step potential and pulse amplitude (in differential pulse voltammetry technique), applied potential, the rotating speed of the disk (in amperometry technique), and the solution pH was investigated. Under the optimized conditions, the currents were found to be linear with the nitrite concentration in the range 0.05–33.0 and 0.5–800 µmol L?1 with detection limits of 0.02 and 0.2 µmol L?1 using differential pulse voltammetry and hydrodynamic amperometry, respectively. The introduced modified electrode showed good repeatability (RSD% = 3.2) and reproducibility (RSD% = 4.7). This electrochemical sensor was exerted successfully for the determination of nitrite and nitrate in real samples including water and wastewater samples.  相似文献   

15.
An electrochemical oxidation route was developed for sensitive and selective assay of nitrotriazolone (NTO) explosive in some environmental samples on a multi-walled carbon nanotube (MWCNTs)/TiO2 nanocomposite paste electrode, for prevention of the analytical interference of conventional reducible energetic compounds. Detailed evaluations were made for the electrochemical behaviour of NTO on the modified electrode by adsorptive stripping voltammetry, electrochemical impedance spectroscopy (EIS) and chronoamperometry techniques in the pH range of 2.0–10.0. Parameters such as diffusion coefficient constant of NTO were calculated, and various experimental conditions were also optimised. Under optimal conditions the calibration curve had two linear dynamic ranges of 130.0–3251.5 μg L?1 and 6.5–26.0 mg L?1 with a detection limit of 26.0 μg L?1 (0.2 μmol L?1) and precision of <3%. This electrochemical sensor was further applied to determine NTO in real soil and water samples with satisfactory results.  相似文献   

16.
A glassy carbon electrode (GCE) was modified with a thin layer of multiwalled carbon nanotubes (MWCNTs) and subsequently, electrochemically deposited poly‐pyrrole. The electrochemical behavior of mesalazine was studied on the surface of the modified electrode by applying linear sweep voltammetry (LSV). The electropolymerization process and the electrochemical response toward mesalazine were investigated in the presence of different aromatic anion dopants including, benzenesulfonic acid (BSA), 1,3‐benzenedisulfonic acid (1,3‐BDSA), 1,5‐naphthalenedisulfonic acid (1,5‐NDSA) and new coccine (NC). By using 1,5‐NDSA as dopant, a significant increase (~418 times) in the peak current of mesalazine was observed, in comparison to the bare GCE. Experimental variables such as drop size of the cast MWCNTs suspension, pH of the supporting electrolyte, accumulation conditions and the number of scans in the electropolymerization process were optimized by monitoring the LSV responses of mesalazine. Under the optimum conditions, two linear dynamic ranges of 0.01–0.1 µmol L?1 and 0.1–1.0 µmol L?1 with a detection limit of 3 nmol L?1 were resulted for the voltammetric determination of mesalazine. The prepared electrode showed high sensitivity, stability and good reproducibility for determination of mesalazine. These properties made the prepared sensor suitable for the determination of mesalazine in pharmaceutical and clinical preparations.  相似文献   

17.
A sensitive electrochemical method was developed for the determination of bisphenol A (BPA) at a glassy carbon electrode (GCE) modified with a multiwalled carbon nanotubes (MWCNTs)‐gold nanoparticles (GNPs) hybrid film, which was prepared based on the electrostatic interaction between positively charged cetyltrimethylammonium bromide (CTAB) and negatively charged MWCNTs and GNPs. The MWCNT‐GNPs/GCE exhibited an enhanced electroactivity for BPA oxidation versus unmodified GCE and MWCNTs/GCE. The experimental parameters, including the amounts of modified MWCNTs and GNPs, the pH of the supporting electrolyte, scan rate and accumulation time, were examined and optimized. Under the optimal conditions, the differential pulse voltammetric anodic peak current of BPA was linear with the BPA concentration from 2.0×10?8 to 2×10?5 mol L?1, with a limit of detection of 7.5 nmol L?1. The proposed procedure was applied to determine BPA leached from real plastic samples with satisfactory results.  相似文献   

18.
A macrocyclic ligand “7,10,13-triaza-1-thia-4,16-dioxa-20,24-dimethyl-2,3;17,18-dibenzo-cyclooctadecane-6,14-dione” as an efficient ionophore was used into a new Cu2+ nano-composite potentiometric carbon paste sensor containing multi-walled carbon nanotubes (MWCNTs), nanosilica particles, and room temperature ionic liquid (1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [BMP]Tf2N). This potentiometric sensor responds to copper ions in a wide linear dynamic range of 4.50 × 10?8 to 1.00 × 10?2 mol L?1 with Nernstian slope of 29.64 ± 0.10 mV per decade. The detection limit of 2.34 × 10?8 mol L?1 was obtained at the pH range 3.5–6.0. It has a fast response with response time of about 10 s, and can be used for at least 16 weeks without any considerable divergence in the potentials. The suggested sensor thus allows sensitive, selective, simple, low cost, and stable electrochemical sensing of Cu2+ ions in the presence of a large number of alkali, alkaline earth, transition and heavy metal ions. This sensor was successfully applied in the determination of copper ions in water and waste water samples.  相似文献   

19.
《Analytical letters》2012,45(4):395-407
A screen-printed electrode sensor has been fabricated by modifying the carbon ink surface with different brands of multiwall carbon nanotubes (MWCNTs) and bismuth film (BiF) for the determination of traces of lead, cadmium and zinc ions by square wave anodic stripping voltammetry. The MWCNTs, from three different sources, were functionalized and dispersed in Nafion (MWCNT-Nafion) solution and placed on screen printed electrodes (MWCNT-Nafion/SPE); bismuth films were then prepared by ex-situ plating of bismuth onto the MWCNT-Nafion/SPE electrodes. The electrochemical characteristics of BiF/MWCNT-Nafion/SPE/ were examined by electrochemical impedance spectroscopy and showed differences; the charge transfer resistance tends to decrease with negative applied potentials. After optimizing the experimental conditions, the square-wave peak current signal is linear in the nmol L?1 range. The lowest limit of detection found for the separate determination of lead, cadmium and zinc were 0.7 nmol L?1, 1.5 nmol L?1, and 11.1 nmol L?1, respectively, with a 120 s deposition time.  相似文献   

20.
Copper nanoparticles (Cu-NPs) were incorporated into chitosan hydrogel to form a film on the surface of a glassy carbon electrode (GCE) leading to a sensing element for D-arabinitol with excellent oxidative catalytic activity. The electrochemical response to D-arabinitol was studied by cyclic voltammetry and differential pulse voltammetry. Operational parameters affecting the response were examined and optimized, and a simple and sensitive method was established for the determination of D-arabinitol. Response is linear in the concentration range from 10 μmol·L?1 to 10 mmol·L?1, and the limit of detection is 1.0 μmol·L?1. The method may be combined with separation techniques in order to analyze for the ratio of D- and L-arabinitol which is a diagnostic marker for candidiasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号