首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The interaction of resonant sounds with the flow past a thick, blunt, flat plate in a rigid walled square duct has been examined. Sound pressure levels of up to 146 dB (re 20 μPa) have been recorded. It has been established that the resonant sound can initially be excited at a harmonic of the normal vortex shedding frequency. In some cases, the sound “feeds back” on the vortex shedding process causing a step change in the shedding frequency, increasing the Strouhal number for the plate by up to twice the normal value. This excited vortex shedding and associated resonances can be suppressed by locating the plate at incidence to the air flow direction. Complex duct modes can be generated by the vortex shedding resulting in different regions of the plate shedding at different Strouhal numbers.  相似文献   

2.
An educational experimental system has been developed for studying tonal sound generation in acoustic resonators. Tones are excited by either heat addition or vortex shedding in the presence of mean flow. The system construction is straightforward and inexpensive. Several test arrangements and experimental data are described in this paper. The experimental setups include a modified Rijke tube, a standing-wave thermoacoustic engine, a baffled tube with mean flow, and an acoustic energy harvester with a piezoelement. Simplified mathematical models for interpreting data are discussed, and references are provided to literature with more advanced analyses. The developed system can assist both graduate and undergraduate students in understanding acoustic instabilities via conducting and analyzing interesting experiments.  相似文献   

3.
Corrugated pipes are commonly used because of their local rigidity combined with global flexibility. The flow through such a pipe can induce strong whistling tones, which is an environmental nuisance and can be a threat to the mechanical integrity of the system. This paper considers the use of a composite pipe: a shorter corrugated pipe segment embedded between smooth pipe segments. Such a pipe retains some flexibility, while the acoustical damping in the smooth pipe reduces whistling tones. Whistling is the result of coherent vortex shedding at the cavities in the wall. This vortex shedding is synchronized by longitudinal acoustic waves traveling along the pipe. The acoustic waves trigger the vortex shedding, which reinforces the acoustic field for a critical range of the Strouhal number values. A linear theory for plane wave propagation and the sound production is proposed, which allows a prediction of the Mach number at the threshold of whistling in such pipes. A semi-empirical approach is chosen to determine the sound source in this model. This source corresponds to a fluctuating force acting on the fluid as a consequence of the vortex shedding. The functional form of the Strouhal number dependency of the dimensionless sound source amplitude is based on numerical simulations. The magnitude of the source and the Strouhal number range in which it can drive whistling are determined by matching the model to results for a specific corrugated pipe segment length. This semi-empirical source model is then applied to composite pipes with different corrugated segment lengths. In addition, the effect of inlet acoustical convective losses due to flow separation is considered. The Mach number at the threshold of whistling is predicted within a factor 2.  相似文献   

4.
A computational and experimental study of resonators in three dimensions   总被引:1,自引:0,他引:1  
In a previous work by the present authors, a computational and experimental investigation of the acoustic properties of two-dimensional slit resonators was carried out. The present paper reports the results of a study extending the previous work to three dimensions. This investigation has two basic objectives. The first is to validate the computed results from direct numerical simulations of the flow and acoustic fields of slit resonators in three dimensions by comparing with experimental measurements in a normal incidence impedance tube. The second objective is to study the flow physics of resonant liners responsible for sound wave dissipation. Extensive comparisons are provided between computed and measured acoustic liner properties with both discrete frequency and broadband sound sources. Good agreements are found over a wide range of frequencies and sound pressure levels. Direct numerical simulation confirms the previous finding in two dimensions that vortex shedding is the dominant dissipation mechanism at high sound pressure intensity. However, it is observed that the behavior of the shed vortices in three dimensions is quite different from those of two dimensions. In three dimensions, the shed vortices tend to evolve into ring (circular in plan form) vortices, even though the slit resonator opening from which the vortices are shed has an aspect ratio of 2.5. Under the excitation of discrete frequency sound, the shed vortices align themselves into two regularly spaced vortex trains moving away from the resonator opening in opposite directions. This is different from the chaotic shedding of vortices found in two-dimensional simulations. The effect of slit aspect ratio at a fixed porosity is briefly studied. For the range of liners considered in this investigation, it is found that the absorption coefficient of a liner increases when the open area of the single slit is subdivided into multiple, smaller slits.  相似文献   

5.
The fully 3D turbulent incompressible flow around a cylinder and in its wake at a Reynolds number Re = = 9×104 based on the cylinder diameter and Mach number M = 0.1 is calculated using Large Eddy Simulations (LES). Encouraging results are found in comparison to experimental data for the fluctuating lift and drag forces. The acoustic pressure in far-field is commutated through the surface integral formulation of the Ffowcs Williams and Hawkings (FWH) equation in acoustic analogy. Five different sound sources, the cylinder wall and four permeable surfaces in the flow fields, are employed. The spectra of the sound pressure are generally in quantitative agreement with the measured one though the acoustic sources are pseudo-sound regarding the incompressible flow simulation. The acoustic component at the Strouhal number related to vortex shedding has been predicted accurately. For the broad band sound, the permeable surfaces in the near wake region give qualitative enough accuracy level of predictions, while the cylinder wall surface shows a noticeable under-prediction. The sound radiation of the volumetric sources based on Lighthill tensors at vortex shedding is also studied. Its far-field directivity is of lateral quadrupoles with the weak radiations in the flow and cross-flow directions.  相似文献   

6.
Recently, there has been a growing interest in understanding and characterising intermittent burst oscillations that presage the onset of combustion instability. We construct a deterministic model to capture this intermittency route to instability in a bluff-body stabilised combustor by coupling the equations governing vortex shedding and the acoustic wave propagation in a confinement. A feedback mechanism is developed wherein the sound generated due to unsteady combustion affects the vortex shedding. This feedback leads to a variation in the time of impingement of the vortices with the bluff body causing the system to exhibit chaos, intermittency, and limit cycle oscillations. Experimental validation of the model is provided using various precursor measures that quantify the observed intermittent states.  相似文献   

7.
A narrow strip has been introduced as a control element to suppress vortex shedding from a cylinder. The strip is set parallel to the cylinder axis, and the key parameter of control in this study is the strip position, which is determined by the angle of attack of the strip and the distance between the strip and the cylinder axis. A circular cylinder and a square cylinder were tested respectively. Flow visualization and hot-wire measurement were performed in a low turbulence wind tunnel in the range of Reynolds numberRe=4.0×103≈2.0×104. Test results show that, vortex shedding from both sides of the cylinder can be effectively suppressed if the strip is located in a certain zone in the wake. The effective zones in circular cylinder wakes at different Reynolds numbers have been found out, and the mechanism of the suppression has been discussed.  相似文献   

8.
圆孔声学非线性效应的数值模拟   总被引:1,自引:1,他引:0  
本文发展了一种离散涡模型,模拟了在高声强声波作用下圆孔处发生的涡脱落过程。进而计算了圆孔中的声质点速度,并分析了孔中速度的畸变情况、最后给出了圆孔的非线性声阻和声抗的理论值。非线性声抗的理论预测是现有的研究圆孔声学非线性效应的准稳态模型没有满意解决的问题,因而所做的有关尝试是本文工作的特点之一。  相似文献   

9.
Regularities of the emission of vortex sound (eolian tone) during air flow around stationary and rotating cylindrical profiles have been investigated. The influence of the flow Reynolds number on the intensity of vortex sound emission has been estimated from results of measuring the pressure fluctuation distribution on the surface of stationary cylindrical rods flowed around by air, as well as in the wake behind them. It is shown that the emission intensity depends on the location of the point of flow detachment from the profile surface and the track width near the profile. The ranges of the flow Reynolds numbers where the emission intensity increases with different flow velocities have been determined by analyzing the dependence of the profile lift coefficient on the Reynolds number. An independent way of determining the profile lift coefficient by measuring the vortex sound intensity is proposed. The results explain contradictions between the results of some authors, who experimentally observed different dependences of emission intensity on the flow velocity. The influence of the profile diameter on the vortex sound emission intensity has been investigated. The boundary Reynolds number above which the profile diameter does not affect emission has been established for stationary and rotating cylindrical profiles. It is shown that deposition of rough coatings on the rod surface may reduce the vortex sound emission intensity by affecting the point of flow detachment from the surface.  相似文献   

10.
The mean flow of gas in a pipe past a cavity can excite the resonant acoustic modes of the cavity--much like blowing across the top of a bottle. The periodic shedding of vortices from the leading edge of the mouth of the cavity feeds energy into the acoustic modes which, in turn, affect the shedding of the next vortex. This so-called aeroacoustic whistle can excite very high amplitude acoustic standing waves within a cavity defined by coaxial side branches closed at their ends. The amplitude of these standing waves can easily be 20% of the ambient pressure at optimal gas flow rates and ambient pressures within the main pipe. A standing wave thermoacoustic heat pump is a device which utilizes the in-phase pressure and displacement oscillations to pump heat across a porous medium thereby establishing, or maintaining, a temperature gradient. Experimental results of a combined system of aeroacoustic sound source and a simple thermoacoustic stack will be presented.  相似文献   

11.
The dynamics of a vortex tube in a compressible medium with the Rayleigh energy release mechanism has been considered theoretically. The analytic theory of this phenomenon is constructed and various approximations have been considered. The range of applicability conditions for the vortex formation theory has been extended substantially. It has been shown based on the model of a plasma as a Rayleigh medium that, for a certain relative orientation of the vortex axis and the electric field vector at an air pressure of tens of Torr, a vortex tube in the glow discharge plasma is destroyed over time intervals on the order of hundredths of a second. It has been found that allowance for the compressibility leads to an increase in the rate of vortex destruction. For this medium, the time dependences of the tangential velocity in a vortex tube have been calculated for various initial parameters. The similarity rules for the given phenomena and the universal dependence of the vortex tube dynamics have been obtained.  相似文献   

12.
非定常尾迹控制叶栅分离研究   总被引:1,自引:0,他引:1  
本文采用大涡模拟对某大转角叶栅的非定常分离流动及其在非定常尾迹作用下的分离控制机理进行了数值分析。主要捕捉了两个特征频率:分离泡不稳定频率fshear和尾缘脱落涡频率fshed,研究了不同的激励频率、尾迹移动方向、随机脉动等激励特征控制流动分离的效果。结果显示:特定外部频率强化了分离剪切层中的K-H展向涡结构,fshed能同时影响分离区域和尾涡区域,fshear只能作用于分离区域;尾迹从吸力面向压力面移动时,分离结构表现出对来流周期性更明显的响应;进口随机脉动对破坏K-H展向涡结构非常有效。  相似文献   

13.
以亚临界三维圆柱绕流的气动噪声为对象,研究声类比理论中偶极子及四极子源模型在预测低Mach数流动气动声的可靠性及准确性。使用大涡模拟(LES)得到非定常流场,并依据声类比中的Curle等效偶极子面源和Lighthill四极子体源模型,提取相应的声源数据,经Fourier变换得到涡脱落频率处的声源信息,进而定量预测圆柱绕流的气动声。结果表明:Curle模型的结果与实验结果吻合良好,Lighthill体源模型预测的准确性依赖于声源区域截断,不恰当的声源截断将导致错误的声场预测。   相似文献   

14.
The turbulent wake behind a curved circular cylinder is investigated based on data obtained from a direct numerical simulation. Here, emphasis is placed in the assessment of two approaches for simplified modelling: reduced-order modelling (ROM) and Reynolds-averaged Navier–Stokes equations. To this end, the instantaneous vortical structures, the proper orthogonal decomposition (POD) of the flow, and relevant Reynolds stress components have been analysed. The results show that despite the complexity of the instantaneous vortical structures, the wake dynamics are governed by the quasi-periodic shedding of primary vortices. Between 24% and 50% of the kinetic energy in the POD is captured by the two most energetic modes, and about 200 modes are needed to capture 90% of the kinetic energy. These findings suggest that, as long as the large-scale structures of the von Kármán vortex shedding are concerned, the present case can be approached by ROM; but a detailed representation of the flow dynamics without an eddy viscosity model that accounts for the unresolved turbulent fluctuations would require a large amount of degrees of freedom. Concerning the Reynolds stresses, their magnitude varies considerably depending on the depth at which they have been sampled. This dependence is related to the strength of the vortex shedding, and the intensity of the secondary flows induced by the curvature of the cylinder. As a consequence of the combination of these two effects, the correlation between streamwise and vertical velocity fluctuations is highest in the wake behind the midspan of the curved cylinder, and the correlation between cross-flow and vertical velocity fluctuations reaches large values in the lower wake.  相似文献   

15.
This is a study of the effect of initial condition on sound generated by vortex pairing in a low Mach number, cold air jet (0·15 ⩽ M ⩽ 0·35). Data has been taken, both flow velocity fields and sound pressure far fields, in a quality anechoic facility, with careful documentation of the effect of initial condition on the sound field of jets of two different geometries (i.e., circular and elliptic). Explanations are presented for most of the observed effects by applying Möhring's theory of vortex sound to vortex filament models of coherent structures in the jets. The explanations also draw upon experience with coherent structure dynamics. The sound source of interest here is that associated with the pairing of shear layer vortices. The evolution of these vortices is greatly affected by the initial condition as is their resultant sound field. The elliptic jets with laminar boundary layers show azimuthal directivity, namely, sound pressure levels in the minor axis plane were greater than in the major axis plane. This difference decreases as the nozzle boundary layer undergoes natural transition with increasing jet speed. When the nozzle boundary layer is tripped, making it fully turbulent and removing the shear layer mode of pairing, the elliptic jet sound fields become nearly axisymmetric. What appears to be the most acoustically active phase of vortex pairing has been modeled, and the resulting sound field calculated for the circular jet. Supporting evidence is found in the experimental data for the validity of this model. The model explains the connection between the initial condition and the far field sound of jets. Interestingly, a general result of Möhring's theory is that motions of vortex rings (of any arbitrary shape) can produce only axisymmetric sound fields if the rings remain in a plane. This implies that the observed asymmetric directivity of the laminar elliptic jet sound field must be due to non-planar ring motions of the vortical structures. The primary contribution of this paper is to examine quantitatively the role of vortex pairing in the production of jet noise; the results are used to reemphasize that “pairing noise” cannot be dominant in most practical jet sound fields, contrary to claims by other researchers.  相似文献   

16.
This paper presents a further analysis of results of airfoil self-noise prediction obtained in the previous work using large eddy simulation and acoustic analogy. The physical mechanisms responsible for airfoil noise generation in the aerodynamic flows analyzed are a combination of turbulent and laminar boundary layers, as well as vortex shedding (VS) originated due to trailing edge bluntness. The primary interest here consists of evaluating the effects of mean flow convection, quadrupole sources and vortex shedding tonal noise on the overall sound pressure level (OASPL) of a NACA0012 airfoil at low and moderate freestream Mach numbers. The overall sound pressure level is the measured quantity which eventually would be the main concern in terms of noise generation for aircraft and wind energy companies, and regulating agencies. The Reynolds number based on the airfoil chord is fixed at Rec=408,000Rec=408,000 for all flow configurations studied. The results demonstrate that, for moderate Mach numbers, mean flow effects and quadrupole sources considerably increase OASPL and, therefore, should be taken into account in the acoustic prediction. For a low Mach number flow with vortex shedding, it is observed that OASPL is higher when laminar boundary layer separation is the VS driving mechanism compared to trailing edge bluntness.  相似文献   

17.
A number of methods for the prediction of flow-induced acoustic standing waves in heat exchangers are recommended in the literature. The source for this noise has been assumed to be vortex shedding, turbulent buffeting or broadband turbulence and a variety of methods based on these have been proposed for predicting the occurrence of these standing wave resonances. Furthermore, parameters which estimate the capacity of a heat exchanger unit to dissipate acoustic energy and thus suppress such resonances have been suggested. As there has been no direct comparison of these various techniques, there is confusion as to the applicability of each. In this paper the merits of the techniques for predicting resonance are compared, with use of data from four independent sources, and a method for estimating the limit conditions for avoidance of resonance is recommended. In addition, the parameters for estimating the “damping capacity” of a tube bank are examined and shown to have limitations. A modified damping criterion is suggested and appears to correlate existing data well.  相似文献   

18.
A single acoustic resonance, excited by vortex shedding from the trailing edge of a flat plate, has been studied in detail. The resonance was generated in the working section of a low-speed wind tunnel and the scale was large enough for accurate measurements to be made. The trailing edge was designed so that it could be made to oscillate slightly to simulate the correlating effect of the resonance on the vortex shedding.  相似文献   

19.
Both open- and closed-loop control algorithms have been developed for suppressing of vortex shedding behind a circular cylinder in an electrically low-conducting fluid. For the open-loop control, the localized Lorentz forces are generated parallel to the cylinder surface, which have the accelerated effect to the fluid. Furthermore, two closed-loop control methods have been derived from the equations of motion capable of determining at all times the intensity of the Lorentz force to control the vortex shedding of a cylinder.  相似文献   

20.
Effective acoustic source positions (observed from the far field) have been located for the broad band noise from a cylindrical rod rotated about its mid-point by measuring the cross spectral density function of two microphone signals on the axis of rotation. Local source position Strouhal numbers could thereby be calculated. On the basis of acoustic power measurements it was demonstrated that the noise may be normalized on a rod tip Strouhal number basis, and that the velocity exponent is nearly constant when plotted against this parameter. The results indicate that vortex shedding like that for stationary cylinders in a cross flow (occurring along the outer 13 of the rod for a rotational speed of 1000 rpm) is responsible for the high levels of broad band noise in a major peak region. Sources influenced by harmonics of the rod passing frequency were found for frequencies lower than the vortex shedding ones. At higher frequencies broad band noise was found to be emitted from the rod tip area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号