首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have prepared two chiral Schiff base ligands, H2L1 and H2L2, and one achiral Schiff base ligand, H2L3, by treating 2,6‐diformyl‐4‐methylphenol separately with (R )‐1,2‐diaminopropane, (R )‐1,2‐diaminocyclohexane and 1,1′‐dimethylethylenediamine, in ethanolic medium, respectively. The complexes MnL1ClO4 ( 1 ), MnL2ClO4 ( 2 ), MnL3ClO4 ( 3 ), FeL1ClO4 ( 4 ), FeL2ClO4 ( 5 ) and FeL3ClO4 ( 6 ) have been obtained by reacting the ligands H2L1, H2L2 and H2L3 with manganese(III) perchlorate or iron(III) perchlorate in methanol. Circular dichroism studies suggest that ligands H2L1 and H2L2 and their corresponding complexes have asymmetric character. Complexes 1 – 6 have been used as homogeneous catalysts for epoxidation of alkenes. Manganese systems have been found to be much better than iron counterparts for alkene epoxidation, with 3 as the best catalyst among manganese systems and 6 as the best among iron systems. The order of their experimental catalytic efficiency has also been rationalized by theoretical calculations. We have observed higher enantiomeric excess product with catalysts 1 and 4 , so they were attached to surface‐modified magnetic nanoparticles to obtain two new magnetically separable nanocatalysts, Fe3O4@dopa@MnL1 and Fe3O4@dopa@FeL4. They have been characterized and their alkene epoxidation ability has been investigated. These catalysts can be easily recovered by magnetic separation and recycled several times without significant loss of catalytic activity. Hence our study focuses on the synthesis of a magnetically recoverable asymmetric nanocatalyst that finds applications in epoxidation of alkenes and at the same time can be recycled and reused.  相似文献   

2.
Five oxovanadium(IV) complexes of 2-hydroxy-4-methoxybenzaldehyde nicotinic acid hydrazone (H2L1), 2-hydroxy-4-methoxyacetophenone nicotinic acid hydrazone (H2L2) and a binuclear oxovanadium(V) complex of H2L2 have been synthesized. These complexes were characterized by different physicochemical techniques like electronic, infrared and EPR spectral studies. The complexes [VOL1]2 · H2O (1) and [VOL2]2 · H2O (4) are binuclear and [VOL1bipy] (2), [VOL1phen] · 1.5H2O (3) and [VOL2phen] · 2H2O (6) are heterocyclic base adducts and are EPR active. In frozen DMF at 77 K, all the oxovanadium(IV) complexes show axial anisotropy with two sets of eight line patterns. The complex [VOL2 · OCH3]2 (5) is an unusual product and has distorted octahedral geometry, as obtained by X-ray diffraction studies.  相似文献   

3.
A series of new derivatives and previously reported Schiff base ligands and their oxidovanadium(IV) complexes were synthesized, characterized and tested as potential antibacterial agents against four human pathogenic bacteria. These N2O2 type Schiff base ligands were derived from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with different salicylaldehyde derivatives, and their metal complexes were obtained from the reaction of these ligands with bis(acetylacetonato)oxidovanadium(IV). Our studies showed that the metal complexes had moderate antibacterial activity, and this activity was higher than that of the free ligands against both Gram-positive and Gram-negative bacteria. Besides, it was found that the presence of more substituents on the ligands increases the antibacterial activities of both the free ligands and their complexes. The crystal structures of H2L4 and its corresponding complex VOL4 were determined by X-ray crystallography.  相似文献   

4.
2,4'-Bipyridyl (2,4'-bipy or L) complexes of Mn(II) with the formulae MnL2X2·2H2O (X=Cl, Br, NCS, NO3), MnLSO4·5H2O and MnL4(ClO4)2·2H2O were synthesized and characterized via the IR spectra and magnetic, and conductivity measurements. The nature of the Mn(II)-ligand coordination is discussed. The thermal decompositions of these compounds were studied in air atmosphere. The mode of decomposition depends on the anion present, but the final product in all cases is Mn3O4. Some of the intermediates (MnL2Cl2, MnLCl2, MnL2Br2, MnL2(NCS)2 and MnLSO4) formed during the pyrolysis are isomeric with 2,2'-bipy and 4,4'-bipy complexes.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

5.
Metallomicelles made from two Schiff base manganese(III) complexes (MnL1 and MnL2) and surfactants (CTAB and Brij35) were used as mimetic peroxidase in the catalytic oxidation of phenol by H2O2. The catalytic activity of the complexes (MnL1 and MnL2) were investigated. The mechanism and a kinetic mathematic model of the phenol catalytic oxidation were also studied. The results show the optimum acidity of the enzyme-like system in the paper is ca. pH 7.0, the optimum temperature which is ca. 35°C and the optimum molar ratio of H2O2 to the complex is ca. 30 in the complexes-H2O2-buffered solution; the Schiff base manganese(III) complexes and their metallomicelles as peroxidase mimics exhibit good catalytic activity and similar catalytic character to natural enzyme.  相似文献   

6.
Summary Complexes of 3-methyl- or 3-ethyl-4-amino-5-thiolato-1,2,4-triazole (LH) and its Schiff base derivatives with oxovanadium(IV), of the types [VOL2(H2O)], [VOL2-(H2O)] and [VOL(H2O)2] (where LH = Schiff bases derived from condensation of LH with benzaldehyde, 2-chlorobenzaldehyde, 4-methoxybenzaldehyde or acetophenone; LH2 = Schiff bases derived from condensation of LH with salicylaldehyde or o-hydroxyacetophenone) have been prepared and characterized by elemental analyses, electrical conductance, magnetic moments and spectral data. The thermal behaviour of selected complexes was investigated by t.g., d.t.g. and d.s.c. techniques. The antifungal and antiviral activities of the Schiff bases and their corresponding complexes were also investigated.Author to whom all correspondence should be directed.  相似文献   

7.
A series of manganese(II) complexes of general formula MnLn(H2O)m (where H2Ln are substituted N,N′‐bis(salicylidene)‐1,2‐diimino‐2,2‐dimethylethane) have been prepared by electrochemical synthesis and characterized by analytical and spectroscopic techniques, magnetism and by studying their redox reversibility character by cyclic and normal pulse voltammetry. The reactivity of these complexes with sulphur dioxide has been investigated in the solid state and in toluene slurries at room temperature. The studies of the reversibility of the reaction (desorption studies) by thermogravimetrical analysis (TGD) have shown a different behaviour among the SO2‐adducts (from irreversible to totally reversible fixing), pointing to different SO2 binding modes. Thus, adducts 10 , 12 and 14 , kept the SO2 after TGD, signifying S–bridged SO2 binding mode, while TGD for 8 , 9 and 13 revealed the lability of their SO2, attributable to ligand bound SO2 coordination. The manganese(II) precursor 4 is that one which has the ability of reversily fixing a major quantity of SO2 and undergoes the sulphato reaction to form 11 also.  相似文献   

8.
Five Mn(III) nitrate complexes have been synthesized from dianionic hexadentate Schiff bases obtained by the condensation of 3-ethoxy-2-hydroxybenzaldehyde with different diamines. The complexes have been characterized by elemental analysis, ESI mass spectrometry, IR and 1H NMR spectroscopy, r. t. magnetic, and molar conductivity measurements. Parallel-mode EPR spectroscopy of 1 is also reported. Ligand H2L3 and complexes [MnL1(H2O)2](NO3)(CH3OH) (1), [MnL3(H2O)2]2(NO3)2(CH3OH)(H2O) (3), and [MnL4(H2O)2](NO3)(H2O)2 (4) were crystallographically characterized. The X-ray structures show the self-assembly of the Mn(III)–Schiff base complexes through µ-aquo bridges between neighboring axial water molecules and also by π–π stacking interactions, establishing dimeric and polymeric structures. The peroxidase and catalase activities of the complexes have been studied. Complexes with the shorter spacer between the imine groups (12) behave as better peroxidase and catalase mimics, probably due to their ability to coordinate the hydrogen peroxide substrate to manganese.  相似文献   

9.
Two new oxovanadium(V) complexes, [VOL1(OEt)(EtOH)] (1) and [VOL2(OMe)(MeOH)] (2), were prepared by reaction of [VO(acac)2] (where acac?=?acetylacetonate) with N′-(3-bromo-2-hydroxybenzylidene)-4-methylbenzohydrazide (H2L1) in ethanol and N′-(3-bromo-2-hydroxybenzylidene)-4-methoxybenzohydrazide (H2L2) in methanol, respectively. Crystal and molecular structures of the complexes were determined by elemental analysis, infrared spectra, and single-crystal X-ray diffraction. The V ions have octahedral coordination. Thermal stability and the inhibition of urease of the complexes were studied.  相似文献   

10.
New transition metal complexes of Co(II), Cu(II), Ni(II), and Fe(III) of the ligands 6,6′-(1E,1′E)-(4,5-dimethyl-1,2-phenylene)bis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)bis(7-hydroxy-5-methoxy-2-methyl-4H-chromen-4-one) H2L1 and 6,6’-(1E,1′E)-cyclohexane-1,2-diylbis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)bis(7-hydroxy-5-methoxy-2-methyl-4H-chromen-4-one) H2L2 have been prepared and characterized using physio-chemical and spectroscopic methods. The results obtained for the complexes indicated that the geometries of the metal centres are either square planar or octahedral. Cyclopropanation reactions of unactivated olefins by ethyldiazoacetate (EDA) in the presence of [L1Cu]·H2O, [L2Cu]·2H2O and [L2*Co]·2H2O as catalysts were examined. The results showed that only [L2*Co]·2H2O can act as a catalyst for the cyclopropanation reaction of unactivated olefins with very high selectivity (up to 99% based on EDA).  相似文献   

11.
Bis{μ‐2‐[bis(pyridin‐2‐ylmethyl)amino]acetato}bis[diaquamanganese(II)] bis(trifluoromethanesulfonate) monohydrate, [Mn2(C14H14N3O2)2(H2O)4](CF3O3S)2·H2O, (I), and bis{μ‐3‐[bis(pyridin‐2‐ylmethyl)amino]propionato}bis[aquamanganese(II)] bis(trifluoromethanesulfonate) dihydrate, [Mn2(C15H16N3O2)2(H2O)2](CF3O3S)2·2H2O, (II), form binuclear seven‐coordinate complexes. Oxidation of (II) with ammonium hexanitratocerate(IV), (NH4)2[Ce(NO3)6], gave the oxide‐bridged dimanganese(IV) complex di‐μ‐oxido‐bis(bis{3‐[bis(pyridin‐2‐ylmethyl)amino]propionato}manganese(IV)) bis[triaquatetranitratocerate(IV)], [Mn2O2(C15H16N3O2)2][Ce(NO3)4(H2O)3]2, (III). The manganese complexes in (II) and (III) sit on a site of symmetry.  相似文献   

12.
Two new oxovanadium(V) complexes, [VOL1(SHA)] (I) and [VOL2(BHA)] (II), were prepared by the reaction of [VO(Acac)2] (Acac = acetylacetonate) with N′-(2-hydroxybenzylidene)isonicotinohydrazide (H2L1) and salicylhydroxamic acid (HSHA) and 4-chloro-N′-(2-hydroxy-3-methoxybenzylidene)benzohydrazide (H2L2) and benzohydroxamic acid (HBHA), respectively, in methanol. Crystal and molecular structures of the complexes were determined by elemental analysis, infrared spectra and single crystal X-ray diffraction (CIF file CCDC nos. 978238 (I) and 978392 (II)). The V atoms are in octahedral coordination. Thermal stability and the inhibition of urease of the complexes were studied.  相似文献   

13.
Vanadium(IV) Schiff base complexes (VOL1‐VOL3) were synthesized and characterized by elemental analysis, various spectral methods and single crystal XRD studies. Structural analysis of VOL2 reveals that the central vanadium ion in the complex is six coordinate with distorted octahedral geometry. Density functional theory (DFT) and time dependent (TD‐DFT) studies were used to understand the electronic transitions observed in the complexes in UV–Vis spectra. The electrochemical behavior of the complexes was investigated in acetonitrile medium exhibit quasi‐reversible one electron transfer. The DNA and BSA protein binding interaction of vanadium complexes has been explored by UV–Vis and fluorescence spectral methods and viscosity measurements reveal that the complexes interact with CT‐DNA through intercalation mode and follows the order VOL1 < VOL3 < VOL2. The complexes exhibit binding interactions with BSA protein. The complexes act as chemical nuclease and cleave DNA in the presence of H2O2. The 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) assay was used to evaluate the radical scavenging activity demonstrate the antioxidant property of the complexes. The antimicrobial activity was screened for several microorganisms, Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli. The mimicking of vanadium haloperoxidase was investigated by the bromination of the organic substrate phenol red by vanadium complexes in the presence of bromide and H2O2.  相似文献   

14.
The use of bis(NHC) manganese(I) complexes 3 as catalysts for the hydrogenation of esters was investigated. For that purpose, a series of complexes has been synthesized via an improved two step procedure utilizing bis(NHC)-BEt3 adducts. By applying complexes 3 with KHBEt3 as additive, various aromatic and aliphatic esters were hydrogenated successfully at mild temperatures and low catalyst loadings, highlighting the efficiency of the novel catalytic system. The versatility of the developed catalytic system was further demonstrated by the hydrogenation of other substrate classes like ketones, nitriles, N-heteroarenes and alkenes. Mechanistic experiments and DFT calculations indicate an inner sphere mechanism with the loss of one CO ligand and reveal the role of BEt3 as cocatalyst.  相似文献   

15.
Novel mononuclear oxovanadium(IV) and manganese(III) complexes [VO(L1)2·H2O] (1); [VO(L2)2·H2O] (2); [VO(L3)2·H2O] (3); [Mn(L1)2]ClO4·H2O (4); [Mn(L2)2] ClO4·H2O (5); [Mn(L3)2]ClO4·H2O (6) were prepared by condensation of 1 mol of VOSO4·5H2O or Mn(OAc)3· 2H2O with 2 mol of ligand HL1, HL2 or HL3 (where HL1 = 4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2- phenyl-2,4-dihydro-pyrazol-3-one; HL2=4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2-p-tolyl-2,4-dihydro-pyrazol-3-one; HL3=4-{4-[(2-hydroxy-ethyl-amino)-methyl]-3-methyl-5-oxo-4,5-dihydropyrazol-1-yl} benzene sulfonic acid). The resulting complexes were characterized by elemental analyses, molar conductance, magnetic and decomposition temperature measurements, electron spin resonance, FAB mass, IR and electronic spectral studies. From TGA, DTA and DSC, the thermal behaviour and degradation kinetic were studied. Electronic spectra and magnetic susceptibility measurements indicate distorted octahedral stereochemistry of oxovanadium(IV) complexes and regular octahedral stereochemistry of manganese(III) complexes. Hamiltonian and bonding parameters found from ESR spectra indicate the metal ligand bonding is partial covalent. The X-ray single crystal determination of one of the representative ligand was carried out which suggests existence of amine-one tautomeric form in the solid state. The 1H-NMR spectra support the existence of imine-ol form in solution state. The LC-MS studies sustain the1H-NMR result. The electronic structure of the same representative ligand was optimized using 6-311G basis set at HF level ab initio studies to predict the coordinating atoms of the ligand.  相似文献   

16.
Tridentate Schiff bases (H2L1 or H2L2) were derived from condensation of acetylacetone and 2-aminophenol or 2-aminobenzoic acid. Binuclear square pyramidal complexes of the type [M2(L1)2]?·?nH2O (M?=?Fe–Cl, n?=?0; M?=?VO, n?=?1) were accessed from interaction of H2L1 with anhydrous FeCl3 and VOSO4?·?5H2O, respectively. A similar reaction with H2L2, however, produced mononuclear complexes [ML2(H2O) x ]?·?nH2O (M=Fe–Cl, x?=?0, n?=?0; M=VO, x?=?1, n?=?1). The compounds were characterized using elemental analysis, FT-IR, UV-Vis, and NMR (for ligand only), and mass spectroscopies and solution electrical conductivity studies. Magnetic susceptibility measurements suggest antiferromagnetic exchange in binuclear Fe(III) and VO(IV) complexes. Thermo gravimetric analysis (TGA) provided unambiguous evidence for the presence of coordinated as well as lattice water in [VOL2(H2O)]?·?H2O. Cyclic voltammetric studies showed well-defined redox processes corresponding to Fe(III)/Fe(II) and VO(V)/VO(IV). In vitro antimicrobial activities of the compounds were investigated against Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeroginosa, Escherichia coli, Bacillus subtilis, and Proteus vulgaris. H2L1 and its binuclear complexes exhibited pronounced activity against all the microorganisms tested.  相似文献   

17.
Two new mononuclear complexes of manganese(III) viz. [MnL2(LH)2]ClO4 (1) and [MnL2(N3)]·0.5CH3OH (2) have been synthesized by reacting manganese perchlorate with furfurylamine and salicylaldehyde (plus sodium azide in 2) where L = (2-hydroxybenzyl-2-furylmethyl)imine, an asymmetric bidentate Schiff base formed in situ to bind the Mn(III) ion. The complexes have been characterized by elemental analysis, IR spectroscopy, TGA and single crystal X-ray diffraction studies. Structural studies reveal that the complexes 1 and 2 adopt an octahedral and a square pyramidal geometry, respectively. The antibacterial activity of the complexes has been tested against Gram(+) and Gram(?) bacteria.  相似文献   

18.
This paper describes the catalytic performance of two manganese(III) complexes with mono‐Schiff base ligands as artificial hydrolases towards the hydrolysis of p‐nitrophenyl picolinate (PNPP). Observations reveal that the one complex (MnL22Cl) containing morpholine pendants exhibits 1.2–1.7 fold kinetic advantage over the other one (MnL21Cl) containing benzoaza‐15‐crown‐5 group. Especially, optimum molecule structures using a Gaussian 03 software confirm that MnL22Cl indeed possesses a relatively open linked site for the approaching of PNPP, resulting in higher efficiency due to a convenient association between substrate (PNPP) and MnL22Cl. In addition, the steric hindrance of two pendants, i.e., benzoaza‐15‐crown‐5 and morpholine, may be a main influencing factor for tuning catalytic activities of the synthesized Mn(III) catalysts. Both Mn(III) catalysts used here were found to have fine tolerance to the operated temperature and pH. Related kinetic and thermodynamic analyses were also given to demonstrate their structure‐activity relationships (SAR) of both catalysts used.  相似文献   

19.
Some new oxovanadium(V) complexes, [VOL1-3(OEt)(EtOH)] (1-3), have been reported, which were obtained from the reaction of the Schiff bases H2L1-3 (where H2L1 = the salicylhydrazone of diacetyl monoxime; H2L2 = the 4-methoxy salicylhydrazone of diacetyl monoxime and H2L3 = the 4-hydroxy salicylhydrazone of diacetyl monoxime) with VO(acac)2 in a 1:1 molar ratio. Three 4-R-aroylhydrazoneoximes (V) have been used as ligands in the present study, differing in the inductive effect of the substituent R (R = H, OCH3 and OH), in order to observe their influence, if any, on the redox potentials and biological activity of the complexes. All the synthesized ligands and metal complexes were successfully characterized by elemental analysis, IR, UV-Vis and NMR spectroscopy. An X-ray diffraction study of [VOL1(OEt)(EtOH)] (1) reveals that the metal center has a distorted octahedral O5N coordination sphere, where the O,N,O donor ligand and the ethoxo group constitute a satisfactory O3N basal plane. Cyclic voltammetry of the complexes show a quasi-reversible cyclic voltammetric response in the potential range 0.29-0.36 V involving a single electron V(V)-V(IV) reduction. The complexes have also been screened for their antibacterial activity against Escherichia coli, Bacillus, Proteus and Klebsiella. Minimum inhibitory concentrations of these complexes and the antibacterial activities indicate compound 1 as the potential lead molecule for drug design.  相似文献   

20.
Three new binuclear vanadium(V) complexes of bis(aryl)adipohydrazones (H4L1 = bis((2-hydroxynaphthalen-1-yl)methylene)adipohydrazide, H4L2 = bis(5-bromo-2-hydroxybenzylidene)adipohydrazide, and H4L3 = bis(2-hydroxy-3-methoxybenzylidene)adipohydrazide) were synthesized by direct reaction of [VO(acac)2] with the hydrazone ligands. The ligands and complexes were characterized by FT–IR, UV–Vis, and NMR spectroscopic methods. The crystal structures of the complexes of L1 and L3 were determined by X-ray analyses. The solid-state structure of the complex of L1 features a 1D hydrogen-bonded chain from N⋯H–O hydrogen bonding. The catalytic activities of these complexes have been tested in the oxidation of various hydrocarbons using H2O2 as the terminal oxidant. Generally, good to excellent conversions have been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号