首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unsymmetrical mono-tertiary stibines dimethyl(α-picolyl)stibine (picstib), dimethyl(8-quinolyl)stibine (quinstib), and (R;S)-methylphenyl(8-quinolyl)stibine (R;S-quinstib) have been synthesised and the square-planar complexes [MX2(picstib)], [MX2(quinstib)] (where M = Pd or Pt and X = Cl, Br, I or SCN) and [MCl2(R;S-quinstib)] (where M = Pd or Pt) isolated. The thiocyanato derivatives display linkage isomerism. The octahedral complexes [M(CO)4-(picstib)] and [M(CO)4(quinstib)] have also been prepared from the metal hexacarbonyls and the appropriate ligands by UV irradiation in tetrahydrofuran.  相似文献   

2.
A novel conjugation-elongated bis(ethylenedithio)tetraselenafulvalene (BETS) type donor, 2,5-bis(4,5-ethylenedithio-1,3-diselenol-2-ylidene)-2,3,4,5-tetrahydrothiophene (BEDT-HBDST) and its magnetic and non-magnetic anion salts, (BEDT-HBDST)2MX4 (MX4=FeCl4, GaCl4, FeBr4 and GaBr4), were prepared. These four salts are isostructural and belong to the space group of P2/c. They showed semiconducting behavior with small activation energies (59-64 meV). The band structures of these salts are quasi one-dimensional and there is a midgap between the upper band and the lower band, since the degree of dimerization is significant in the stacking direction. The MX4 ions are located between the donor columns and near to the ethylenedithio moieties of the donor molecules. The magnetic susceptibilities of the FeCl4 and FeBr4 salts follow the Curie-Weiss law with Curie constants of 4.6 and 4.8 emu K mol−1 (sum of the spins of S=5/2 and S=1/2) and negative Weiss temperatures of θ=−1.2 and −4.9 K, respectively, revealing a weak antiferromagnetic interaction of 3d spins of the FeCl4 and FeBr4 anions. The Fe?Fe (6.66-7.60 Å), Cl?Cl (4.81-4.82 Å) and Br?Br (4.74-4.77 Å) distances in the crystal structures of these salts are significantly long. Therefore, the direct magnetic interaction between the 3d spins of the nearest neighboring Fe3+ ions appears to be not readily accessible.  相似文献   

3.
The reactions of HgE (E=S, Se) with HgX2 and MX4 (M=Zr, Hf; X=Cl, Br) in evacuated glass ampoules lead to a series of isotypic compounds of the general formula Hg3E2[MX6] in the form of colorless (X=Cl) and light-yellow (X=Br) air-sensitive crystals. The crystal structures of Hg3S2[ZrCl6] (I), Hg3S2[HfCl6] (II), Hg3Se2[ZrCl6] (III), Hg3Se2[HfCl6] (IV), Hg3S2[ZrBr6] (V), and Hg3Se2[ZrBr6] (VI) were refined based on single-crystal data. All compounds crystallize in the monoclinic space group P21/a with the lattice parameters a=662.18(2) pm, b=734.97(3) pm, c=1290.83(5) pm, β=91.755(2)° for (I) and and a=701.97(3) pm, b=756.79(3) pm, c=1350.99(6) pm, β=92.164(3)° for (VI). The structures are built of (Hg3E2)2+ layers stacked perpendicular to the c-axis. The polycationic layers consist of two-dimensionally linked 12-membered Hg6E6 rings in the chair conformation with linear coordinated Hg and trigonal pyramidal coordinated chalcogen atoms. Almost regular octahedral [MX6]2− ions are embedded between the layers. This arrangement is closely related to the structure of Hg3S2[SiF6], which represents a higher symmetric congener. The structure relation is discussed using the supergroup-subgroup relation between space groups.  相似文献   

4.
The crystal structure of RbSbF2SO4 has been determined on a single crystal (R = 0.078 for 710 reflections). The structure shows sulfate anions distorted by the SOSb bonds. The antimony atom is from an SbF2 unit. This antimony dihalogen is from the family of the 11 compounds which are in MX3SbX3 (M = Al, Ga, In) (X = Cl, Br) systems.  相似文献   

5.
AVX3 (A = Rb, Cs, (CD3)4 N; X = Cl, Br, I) crystallize in the hexagonal system, space group P63mmc, with chains of face-sharing VX6 octahedra along the c-axis. This leads to a pronounced one-dimensional character of their magnetic properties with a strong antiferromagnetic exchange interaction J between nearest neighbor V2+ ions along these chains. All compounds except [(CD3)4N]VCl3 order three-dimensionally with ordering temperatures Tc between 13 and 32 K. In the ordered phase the magnetic moments, μ, lie in the basal plane in a triangular arrangement typical for antiferromagnetic interchain interaction J′.  相似文献   

6.
The isomorphism of ternary compounds AgTIX (X = S, Se, Te) is pointed out. The compounds have an orthorhombic unit cell with four formulas and the space group is Pnam. The crystal structure of AgTlTe has been solved with a final R value of 0.098. Silver and tellurium atoms are covalently bonded in chains of AgTe4 tetrahedra delimiting channels where thallium atoms are located.  相似文献   

7.
Three kinds of the 1:1 Ni(dmit)2 salts with 4-(4-pyridyl)pyridinium (PP), 4-[2-(4-pyridyl)ethenyl]pyridinium (P=P), and 4-[2-(4-pyridyl)ethyl]pyridinium (P-P) cations have been prepared and structurally characterized. All of these crystals are composed of a multi-dimensional network of the Ni(dmit)2 anions and the hydrogen-bonding one-dimensional cation chains. Compared with tight hydrogen bonds in the P=P and P-P chains, that in the PP chain is rather loose. The P=P and P-P salts show semiconducting behavior with high resistivity and large activation energy, while the PP salt shows the op-posite temperature dependence with low resistivity at high temperature. The thermoelectric power indicates that the PP salt is an n-doped semiconductor. The proton defects may occur in the loosely bound PP chain which results in the carrier doping in the conduction band formed by the π-π interaction of the Ni(dmit)2 anion radicals.  相似文献   

8.
We report about the LMTO-ASA band structure, ELF and COHP calculations for a number of alkali metal rare earth tellurides of the formulas ALnTe4 (A=K, Rb, Cs and Ln=Pr, Nd, Gd) and KLn3Te8 (Ln=Pr, Nd) to point out structure-properties relations. The ALnTe4 compounds crystallize in the KCeSe4 structure type with Te ions arranged in the form of 4.32.4.3 nets, in which interatomic homonuclear distances indicate an arrangement of isolated dumbbells. This could be verified by the COHP and ELF calculations, both of which revealed isolated [Te2] units. But in contrast to the ionic formulation as A+Ln3+ ([Te2]2−)2, which can be deduced from this observation, the band structure calculations for KPrTe4, KNdTe4, RbNdTe4 and CsNdTe4 reveal metallic conductivity. This behavior was verified for KNdTe4 by resistivity measurements performed by a standard four-probe technique. We explain these results by an incomplete carryover of electrons from the rare earth cation onto tellurium due to covalent bonding leaving parts of the Te-Te ppπ* antibonding states unoccupied. On the other hand the calculations suggest insulating behavior for KGdTe4 resulting from a complete filling of the Te-Te ppπ* antibonding states due to the increased stability of the half filled 4f shell. The ALn3Te8 compounds crystallize in the KNd3Te8 structure type, a distorted addition-defect variant of the NdTe3 type with 44 Te nets. As polyanionic fragments L-shaped [Te3]2− and infinite zig-zag chains 1[Te4]4− are observed (with interatomic homonuclear distances in the range 2.82-3.00 Å), which are separated from each other by distances in the range 3.27-3.49 Å. Again COHP calculations made evident that these latter interactions are secondary. Within the infinite zig-zag chains 1[Te4]4− the Te ions at the corners of the chain have a higher negative charge than the linear coordinated ones in the middle. KPr3Te8 and KNd3Te8 are semiconductors, verified for the latter by resistivity measurements.  相似文献   

9.
Four new isostructural rare earth manganese stannides, namely RE3MnSn5−x (x=0.16(6), 0.29(1) for RE=Tm, x=0.05(8), 0.21(3) for RE=Lu), have been obtained by reacting the mixture of corresponding pure elements at high temperature. Single-crystal X-ray diffraction studies revealed that they crystallized in the orthorhombic space group Pnma (No. 62) with cell parameters of a=18.384(9)-18.495(6) Å, b=6.003(3)-6.062(2) Å, c=14.898(8)-14.976(4) Å, V=1644.3(14)-1679.0(9) Å3 and Z=8. Their structures belong to the Hf3Cr2Si4 type and feature a 3D framework composed of 1D [Mn2Sn7] chains interconnected by [Sn3] double chains via Sn-Sn bonds, forming 1D large channels based on [Mn4Sn16] 20-membered rings along the b-axis, which are occupied by the rare earth atoms. Electronic structure calculations based on density functional theory (DFT) for idealized “RE3MnSn5” model indicate that these compounds are metallic, which are in accordance with the results from temperature-dependent resistivity measurements.  相似文献   

10.
The nonstoichiometric rare-earth tin antimonides RESnxSb2 (RE=La, Ce, Pr, Nd, Sm) were characterized by 119Sn Mössbauer spectroscopy and their transport and magnetic properties were measured. The presence of nearly zero-valent Sn is suggested by the similarity of the 119Sn Mössbauer parameters in LaSnxSb2 (0.1≤x≤0.7) to those of elemental β-Sn. All RESn0.7Sb2 compounds exhibit metallic behavior. CeSn0.7Sb2 and NdSn0.7Sb2 show drops in resistivity below 8 K; this is attributed to a transition to a magnetically ordered state. At 25 K, CeSn0.7Sb2 also displays a resistivity minimum characteristic of ordered Kondo lattices. Magnetic studies indicate that, below 4 K, CeSnxSb2 (x=0.5, 0.7) orders ferromagnetically, whereas NdSnxSb2 (x=0.5, 0.7) orders antiferromagnetically and undergoes a metamagnetic transition at HC=5.5 T and 2 K. Neither PrSnxSb2 nor SmSnxSb2 (x=0.5, 0.7) displays long-range magnetic ordering above 2 K.  相似文献   

11.
The 1 : 2 trimethylphosphine (deuterated and non-deuterated) adducts of the Group V trihalides MX3 (where M = P or As and X = Cl or Br) are prepared and examined by vibrational spectroscopy. The forced cis-configuration complexes MX3 · bdpe where bdpe is the bidentate ligand 1,2-bisdimethylphosphinoethane are also prepared and examined spectroscopically. Comparison of the Raman and IR spectra of these complexes shows the monodentate adducts to be covalent monomers having a trans-stereochemistry in the solid state. Normal coordinate calculations in C2v symmetry (trans-stereochemistry) are performed for all monodentate adducts reported.  相似文献   

12.
Large samples (6-8 g) of Yb11Sb10 and Ca11Sb10 have been synthesized using a high-temperature (1275-1375 K) flux method. These compounds are isostructural to Ho11Ge10, crystallizing in the body-centered, tetragonal unit cell, space group I4/mmm, with Z=4. The structure consists of antimony dumbbells and squares, reminiscent of Zn4Sb3 and filled Skutterudite (e.g., LaFe4Sb12) structures. In addition, these structures can be considered Zintl compounds; valence precise semiconductors with ionic contributions to the bonding. Differential scanning calorimetry (DSC), thermogravimetry (TG), resistivity (ρ), Seebeck coefficient (α), thermal conductivity (κ), and thermoelectric figure of merit (zT) from room temperature to at minimum 975 K are presented for A11Sb10 (A=Yb, Ca). DSC/TG were measured to 1400 K and reveal the stability of these compounds to ∼1200 K. Both A11Sb10 (A=Yb, Ca) materials exhibit remarkably low lattice thermal conductivity (∼10 mW/cm K for both Yb11Sb10 and Ca11Sb10) that can be attributed to the complex crystal structure. Yb11Sb10 is a poor metal with relatively low resistivity (1.4 mΩ cm at 300 K), while Ca11Sb10 is a semiconductor suggesting that a gradual metal-insulator transition may be possible from a Ca11−xYbxSb10 solid solution. The low values and the temperature dependence of the Seebeck coefficients for both compounds suggest that bipolar conduction produces a compensated Seebeck coefficient and consequently a low zT.  相似文献   

13.
EuLn2Q4 (Ln=Tb-Lu; Q=S, Se) has been synthesized using Sb2Q3 (Q=S, Se) fluxes at 1000 °C. These compounds crystallize in a CaFe2O4-type three-dimensional channel structure that is built from edge-shared double rutile chains of [LnQ6] octahedra running down the b-axis. Each double chain is connected at the vertices to four other double chains to form open channels where bicapped trigonal prismatic Eu2+ ions reside. All of these compounds show antiferromagnetic ordering with Neel temperatures, TN∼3-4 K. The optical band gaps for EuTb2Se4, EuDy2Se4, EuHo2Se4, EuEr2Se4, EuTm2Se4, EuYb2Se4 EuLu2Se4, and EuYb2S4 are found to be 2.0, 1.8, 1.8, 1.7, 1.8, 1.3, 1.7, and 1.6 eV, respectively.  相似文献   

14.
15.
The lanthanide coinage-metal diarsenides LnTAs2 (Ln=La, Ce-Nd, Sm; T=Ag, Au) have been reinvestigated and their structures have been refined from single crystal X-ray data. Two different distortion variants of the HfCuSi2 type are found: PrAgAs2, NdAgAs2, SmAgAs2, GdAgAs2, TbAgAs2, NdAuAs2 and SmAuAs2 crystallize as twofold superstructures in space group Pmcn with the As atoms of their planar layers forming zigzag chains, whereas LaAgAs2, CeAgAs2 and PrAuAs2 adopt a fourfold superstructure (space group Pmca) with cis-trans chains of As atoms. The respective atomic positions can be derived from the HfCuSi2 type by group-subgroup relations. The compounds with zigzag chains of As atoms exhibit metallic behaviour while those with cis-trans chains are semiconducting as measured on powder pellets. The majority of the compounds including 4f elements show antiferromagnetic ordering at TN<20 K.  相似文献   

16.
The thermal expansion of basic lead sulfates has been measured by X-ray diffraction in the 77–1000 K temperature range. The results are interpreted by taking into account the different structural characteristics of the four compounds which have been studied (PbSO4, nPbO with n = 0, 1, 2, and 4). Lead sulfate PbSO4 is built up from tetrahedral SO4 groups which are connected by lead atoms, yielding thus a quasi-isotropic thermal expansion. The introduction of additional PbO groups corresponds to the substitution of lead chains by -Pb2O- chains (monobasic sulfate), or by -Pb3O2- double chains (dibasic sulfate). Layer-type structures are thus created, and the thermal expansion becomes very anisotropic. The transition observed at 723 K for the dibasic lead sulfate is explained by taking into account the density and the different thermal behavior of the compounds before and after transition. Some information concerning the tetrabasic lead sulfate structure is deduced.  相似文献   

17.
Reduced titanates in the ATi2O4 (A=Li, Mg) spinel family exhibit a variety of interesting electronic and magnetic properties, most notably superconductivity in the mixed-valence spinel, Li1+xTi2−xO4. The sodium and calcium analogs, NaTi2O4 and CaTi2O4, each differ in structure, the main features of which are double rutile-type chains composed of edge-sharing TiO6 octahedra. We report for the first time, the properties and band structures of these two materials. XANES spectroscopy at the Ti K-edge was used to probe the titanium valence. The absorption edge position and the pre-edge spectral features observed in the XANES data confirm the assignment of Ti3+ in CaTi2O4 and mixed-valence Ti3+/Ti4+ in NaTi2O4. Temperature-dependent resistivity and magnetic susceptibility studies are consistent with the classification of both NaTi2O4 and CaTi2O4 as small band-gap semiconductors, although changes in the high-temperature magnetic susceptibility of CaTi2O4 suggest a possible insulator-metal transition near 700 K. Band structure calculations agree with the observed electronic properties of these materials and indicate that while Ti-Ti bonding is of minimal importance in NaTi2O4, the titanium atoms in CaTi2O4 are weakly dimerized at room temperature.  相似文献   

18.
Six new compounds in the A2LiMS4 (A=K, Rb, Cs; M=V, Nb, Ta) family, namely K2LiVS4, Rb2LiVS4, Cs2LiVS4, Rb2LiNbS4, Cs2LiNbS4, and Rb2LiTaS4, have been synthesized by the reactions of the elements in Li2S/S/A2S3 (A=K, Rb, Cs) fluxes at 773 K. The A and M atoms play a role in the coordination environment of the Li atoms, leading to different crystal structures. Coordination numbers of Li atoms are five in K2LiVS4, four in A2LiVS4 (A=Rb, Cs) and Cs2LiNbS4, and both four and five in Rb2LiMS4 (M=Nb, Ta). The A2LiVS4 (A=Rb, Cs) structure comprises one-dimensional chains of tetrahedra. The Rb2LiMS4 (M=Nb, Ta) structure is composed of two-dimensional layers. The Cs2LiNbS4 structure contains one-dimensional chains that are related to the Rb2LiMS4 layers. The K2LiVS4 structure contains a different kind of layer.  相似文献   

19.
Ternary rare earth oxides EuLn2O4 (Ln=Gd, Dy-Lu) were prepared. They crystallized in an orthorhombic CaFe2O4-type structure with space group Pnma. 151Eu Mössbauer spectroscopic measurements show that the Eu ions are in the divalent state. All these compounds show an antiferromagnetic transition at 4.2-6.3 K. From the positive Weiss constant and the saturation of magnetization for EuLu2O4, it is considered that ferromagnetic chains of Eu2+ are aligned along the b-axis of the orthorhombic unit cell, with neighboring Eu2+ chains antiparallel. When Ln=Gd-Tm, ferromagnetically aligned Eu2+ ions interact with the Ln3+ ions, which would overcome the magnetic frustration of triangularly aligned Ln3+ ions and the EuLn2O4 compounds show a simple antiferromagnetic behavior.  相似文献   

20.
Two new (NaSrP, Li4SrP2) and two known (LiSrP, LiBaP) ternary phosphides have been synthesized and characterized using single crystal X-ray diffraction studies. NaSrP crystallizes in the non-centrosymmetric hexagonal space group (#189, a=7.6357(3) Å, c=4.4698(3) Å, V=225.69(2) Å3, Z=3, and R/wR=0.0173/0.0268). NaSrP adopts an ordered Fe2P structure type. PSr6 trigonal prisms share trigonal (pinacoid) faces to form 1D chains. Those chains define large channels along the [001] direction through edge-sharing. The channels are filled by chains of PNa6 face-sharing trigonal prisms. Li4SrP2 crystallizes in the rhombohedral space group (#166, a=4.2813(2) Å, c=23.437(2) Å, V=372.04(4) Å3, Z=3, and R/wR=0.0142/0.0222). In contrast to previous reports, LiSrP and LiBaP crystallize in the centrosymmetric hexagonal space group P63/mmc (#194, a=4.3674(3) Å, c=7.9802(11) Å, V=131.82(2) Å3, Z=2, and R/wR=0.0099/0.0217 for LiSrP; a=4.5003(2) Å, c=8.6049(7) Å, V=150.92(2) Å3, Z=2, and R/wR=0.0098/0.0210 for LiBaP). Li4SrP2, LiSrP, and LiBaP can be described as Li3P derivatives. Li atoms and P atoms make a graphite-like hexagonal layer, . In LiSrP and LiBaP, Sr or Ba atoms reside between layers to substitute for two Li atoms of Li3P, while in Li4SrP2, Sr substitutes only between every other layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号