首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The metabolic disorder of glucose in human body will cause diseases such as diabetes and hyperglycemia.Hence the determination of glucose content is very important in clinic diagnosing.In recent years,researchers have proposed various non-invasive wearable sensors for rapid and real-time glucose monitoring from human body fluids.Unlike those reviews which discussed performances,detection environments or substrates of the wearable glucose sensor,this review focuses on the sensing nanomaterials since they are the key elements of most wearable glucose sensors.The sensing nanomaterials such as carbon,metals,and conductive polymers are summarized in detail.And also the structural characteristics of different sensing nanomaterials and the corresponding wearable glucose sensors are highlighted.Finally,we prospect the future development requirements of sensing nanomaterials for wearable glucose sensors.This review would give some insights to the further development of wearable glucose sensors and the modern medical treatment.  相似文献   

2.
Cosnier S  Mailley P 《The Analyst》2008,133(8):984-991
The concept of DNA biosensors is sustained by the need for rapid and highly sensitive analytical tools for genetic detection. Their implementation is based on three key steps: (i) immobilization of single-stranded oligonucleotide probes onto a substrate; (ii) hybridization and (iii) reading. These steps involve complementary knowledge in various disciplinary fields such as surface physics and chemistry, molecular electrochemistry, micro-technologies, optics, electronics and biochemistry. We present here, in a non-exhaustive way, the recent advances in the two steps of immobilization and detection that rely upon increasing integration of the number of reading points or/and of the reading strategy.  相似文献   

3.
Aptamers are a series of high-affinity and high-specificity oligoneucleotides (single-stranded DNA or RNA) to the target, usually selected by the combinatorial chemistry SELEX technique (systematic evolution of ligands by exponential enrichment). Aptamers have proved to be one kind of novel functional molecules in life science and chemistry. After being labeled by signaling groups, the aptamer probe can conveniently transfer the characteristics of aptamer-target recognition to a form of high-sensitive signal, and the high-affinity, high-specificity measurements of metal ion, organic molecules, nucleic acid, proteins, or cells become possible. This article summarizes the recent advances of aptamer probes in different sensing fields, with special emphasis on aptamer probes as fluorescent sensors.  相似文献   

4.
The ever-increasing environmental pollution is a severe threat to the ecosystem’s healthy sustainability, and therefore environmental monitoring of these pollutants has become a burning issue throughout the world. In recent years, cost-effective, selective, portable, sensitive, and rapid sensing devices must be developed in urgent need. Advancement in nanotechnology has urged the use of different types of nanomaterials as an excellent electrode material to amplify the electrochemical detection in terms of long-term stability and electrocatalytic activity of the electrochemical sensors in addition to fulfill the aforementioned desires. This review article intimates significant advancement in developing the enzymatic and non-enzymatic electrochemical sensors based on different nanomaterials for the detection of resorcinol (RS) in the absence or presence of other phenolic compounds. This also concludes the current associated challenges as well as future perspectives for the analysis of RS in the environment. There is plethora of reported articles on RS sensors, but this review mainly discusses the selective reports on the applications of RS sensors.  相似文献   

5.
This review (with 121 references) gives a summary on recent advances in the use of nanomaterials for the optical determination of dopamine. It includes a brief overview of the clinical significance of dopamine followed by a discussion on the recent advances in various nanomaterial-based distinctive optical spectroscopic methods such as (a) colorimetry and spectrophotometry, (b) surface-enhanced Raman spectroscopy (SERS), (c) fluorescence spectrometry, and (d) electrochemiluminescence (ECL) spectrometry. All sections are further divided into subsections based on the type of nanomaterial used, and their advantages and disadvantages are discussed. A discussion on the validity of the nanomaterial-based optical detection of dopamine for human samples is also included. This review concludes with highlights of current challenges of nanomaterial-based optical sensors and an outlook on future perspectives.
Graphical abstract Schematic of the use of various nanomaterials in the detection of dopamine based on colorimetry, spectrophotometry, surface-enhanced Raman spectroscopy, fluorescence and electrochemiluminescence.
  相似文献   

6.
Ma Q  Su X 《The Analyst》2011,136(23):4883-4893
As a unique nanomaterial, quantum dots (QDs) are not only applied in fluorescent labeling and biological imaging, but are also utilized in novel sensing systems. Because QDs have attractive optoelectronic characteristics, QD-based sensors present high sensitivity in detecting specific analytes in the chemical and biochemical fields. In this review, we describe the basic principles and different conjugation strategies in QD-based sensors. An overview of recent advances and various models of QD-sensing systems is also provided. Furthermore, perspectives for sensors based on QDs are discussed.  相似文献   

7.
《中国化学快报》2023,34(10):108241
It is established that monitoring blood glucose on a daily basis is one of the most effective solutions to prevent and treat diabetes. Consequently, developing a glucose sensing platform with outstanding sensing performance occupies an indispensable position for the early diagnosis and risk assessment of diabetes. Recently, biosensor has been deemed as a promising apparatus to acquire the signals for glucose monitoring based on 2D materials. However, it is unsatisfied to deploy some materials widely as a result of some inherent defects. Carbon nanotubes have comparatively high toxicity. MoS2 with unfavourable biocompatibility are still arduously implemented on being functionalized. Fortunately, MXene, a brand-new and rapidly developing two-dimensional material, exhibits marvellous application potential in the domain of biosensing. Therefore, it has exerted tremendous attention from diverse scientific fields owning to its remarkable properties, such as excellent hydrophilicity, metal-like conductivity, abundant surface functional groups, unique layered structure, large specific surface area and remarkable biocompatibility. This review mainly focuses on the main synthetic route of MXenes, as well as the recent advancements of biosensors involving MXenes as an electrode modifier for glucose detection. In addition, the promising prospects and challenges of glucose sensing technology based on MXenes are also discussed.  相似文献   

8.
《中国化学快报》2023,34(11):108515
Rhodium (Rh) has received widespread attention in fundamental catalytic research and numerous industrial catalytic applications. Compared to homogeneous catalysts, Rh-based nanomaterials as heterogeneous catalysts are much easier to separate and collect after usage, making them more suitable for commercial use. To this purpose, there has been a constant demand in constructing stable and highly active Rh-based nanomaterials. In contrast to Rh-based solid solutions with a random distribution of metallic atoms in the lattice, Rh-based intermetallic compounds (IMCs) with a fixed stoichiometric ratio and an ordered atomic arrangement can ensure the homogenous distribution of active sites and structural stability in the catalytic process. In this review, we concentrate on the fabrication of Rh-based IMCs for catalytic applications. Various synthetic methods and protocols for the controlled preparation of Rh-based IMC are illustrated. Meanwhile, the catalytic applications and corresponding catalytic mechanisms are discussed. In addition, personal perspectives about the remaining challenges and prospects in this field are provided. We believe this review will be useful in directing the development of Rh-based IMC catalysts for heterogeneous catalysis.  相似文献   

9.
Drug delivery systems, including liposomes, gels, prodrugs, and so forth, are used to enhance the tissue benefit of a pharmaceutical drug or conventional substance at a specific diseased site with little toxicological impact. Nanotechnology can be a rapidly developing multidisciplinary science that enables the production of polymers at the manometer scale for different medical applications. The use of biopolymers in drug delivery systems provides compatibility, biodegradability and low immunogenicity biologically. Large-scale and smaller-than-expected medication particles can be delivered using biopolymers such as silk fibroins, collagen, gelatine, and others that are easily formed into suspensions. These drug carrier systems are functional at improving drug delivery and can be used in intranasal, transdermal, dental, and ocular delivery systems. This study discusses the latest developments in drug delivery methods based on nanomaterials, mainly using biopolymers like proteins and polysaccharides.  相似文献   

10.
高文杰  白玉  刘虎威 《色谱》2021,39(9):981-988
蛋白质糖基化作为最重要的翻译后修饰之一,在生物体诸如细胞信号转导、蛋白质翻译调控、免疫应答等诸多生命过程中发挥重要作用。此外,蛋白质的异常糖基化还与肿瘤等疾病的发生发展密切相关,这为以糖蛋白为目标的疾病生物标志物的发现提供了可能。尽管质谱已经成为糖蛋白质组学的重要分析工具,但糖肽的低丰度和低电离效率使得其直接质谱分析仍面临挑战。在糖蛋白质组学研究中,从复杂的生物样品中富集糖蛋白和糖肽是重要的环节。磁性固相萃取(MSPE)是一种操作简单、成本低和萃取效率高的样品预处理方法。在磁性固相萃取中,磁性吸附剂是影响萃取效果的关键,将功能化磁性纳米材料作为吸附剂进行糖蛋白质组学研究已经得到广泛应用。该文综述了糖分子、离子液体、凝集素、硼酸亲和配体、金属有机框架、共价有机骨架等功能化磁性纳米材料的制备及其在糖蛋白及糖肽富集中的应用。上述功能化磁性纳米材料具有高比表面积、大量作用位点等特点,其富集机理包括亲水相互作用色谱、凝集素亲和作用色谱、硼酸化学法和肼化学法等,主要应用于血清、血浆、细胞、组织、唾液等样品的糖蛋白和糖肽的富集。该文引用了近十年来发表的约90篇源于科学引文索引(SCI)与中文核心期刊的相关论文,并于文末对磁性纳米材料在糖蛋白和糖肽富集领域的发展趋势进行了展望。  相似文献   

11.
郭志勇  姚秋虹  林奇  陈曦 《色谱》2020,38(1):41-49
随着样品前处理方法的快速发展,薄膜固相微萃取(TFME)技术已经逐渐成为样品前处理领域的基础性研究课题,同时相关的联用方法也受到广泛关注。与其他样品前处理方法相比,TFME具有较高的表面积体积比,以及较大的有效萃取体积,因此可在提高灵敏度的同时减少萃取时间。TFME法结合其他样品分析方法可广泛用于违禁药物、爆炸物、有机农药、兽药等物质的分析中,同时在药物、食品、环境分析等领域有广泛的应用。该文概述了TFME技术的萃取原理及多样化的萃取器件,综述了TFME技术与多项不同分析仪器的联用技术,并展望其发展趋势。  相似文献   

12.
《中国化学快报》2023,34(6):107904
Over the last 50 years, the explosive adoption of modern agricultural practices has led to an enormous increase in the emission of non-biodegradable and highly biotoxic ions into the hydrosphere. Excess intake of such ions, even essential trace elements such as Cu2+ and F, can have serious consequences on human health. Therefore, to ensure safe drinking water and regulate wastewater discharge, photoelectrochemical (PEC) online sensors were developed, with advantages such as low energy consumption, inherent miniaturization, simple instrumentation, and fast response. However, there is no publicly available systematic review of the recent advances in PEC ion sensors available in the literature since January 2017. Thus, this review covers the various strategies that have been used to enhance the sensitivity, selectivity, and limit of detection for PEC ion sensors. The photoelectrochemically active materials, conductive substrates, electronic transfer, and performance of various PEC sensors are discussed in detail and divided into sections based on the measurement principle and detected ion species. We conclude this review by highlighting the challenges and potential future avenues of research associated with the development of novel high-performance PEC sensors.  相似文献   

13.
The abuse of antibiotics will cause an increase of drug-resistant strains and environmental pollution,which in turn will affect human health.Therefore,it is important to develop effective detection techniques to determine the level of antibiotics contamination in various fields.Compared with traditional detection methods,electrochemical sensors have received extensive attention due to their advantages such as high sensitivity,low detection limit,and good selectivity.In this mini review,we summarized the latest developments and new trends in electrochemical sensors for antibiotics.Here,modification methods and materials of electrode are discussed.We also pay more attention to the practical applications of antibiotics electrochemical sensors in different fields.In addition,the existing problems and the future challenges ahead have been proposed.We hope that this review can provide new ideas for the development of electrochemical sensors for antibiotics in the future.  相似文献   

14.
Prime concerns with modern developments are attributed to high level undetected but important biological substances or even toxicants cycled often among individual and populations; which in turn agonizes environmental monitoring, trace-gas detection, water treatment facilities, in vivo detection in biological fluids and other accomplishments. For the detection of such analytes, several analytical devices combined with biological component have been designed with a physiochemical detector component. Here, we essentially focus on drug-based potentiometric membrane sensors known as ion selective electrodes (ISEs). The functionality of ion-selective membrane is quite intricate, challenging, and our understanding is yet to be thrived with more interventions. ISEs have applied explications to enormous variety of analytical inquires as well as informative tools for probing host-guest chemistry. However, expansion of ISEs based applications is aimed to improve the system performance, acquiring enhanced understanding of their response mechanism, and finding new chemical or physical configurations mainly for human welfare. The major strength of ISEs is the precised analytical information, assured by using the ion-selective membrane electrodes used successfully for both in vitro and in vivo assays of pharmaceutical products as well as in clinical analyses. In this review, we attempt to provide a brief prologue to the applicability and advantages of potentiometric sensors in the analysis of pharmaceutically active compounds emphasizing their employment at molecular level for in situ selection of biologically important analytes.  相似文献   

15.
The paper-based sensing devices have drawn a broad interest in analytical chemistry for colorimetric and fluorescent-based analysis of biological, environmental, clinical, and food samples. It is due to the simple, rapid, biodegradable, user-friendly, less expensive, and low waste generation into the environment. Here, the recent development of paper-based sensors fabricated with different noble metal nanoparticles (NPs) and semiconductor and carbon quantum dots (QDs) is demonstrated to analyze several chemical substances from various samples. User-friendly and portable recording devices such as digital cameras, smartphones, scanners, etc. along with color detecting softwares are employed to measure the color intensity of nanomaterials fabricated paper devices after the deposition of a sample solution containing various chemical substances. The advantages and disadvantages of incorporating nanomaterials in the paper substrate (direct deposition, inkjet printing, screen printing and wax printing) are illustrated. The mechanism for colorimetric, fluorescence, phosphorescence, and chemiluminescence sensing using noble metal NPs (Ag, Cu, and Au), semiconductors, and carbon QDs for the determination of metal ions, anions, pesticides, biomolecules, and other toxic chemical substances are discussed. Thus, this review article would be highly useful for scientists and researchers to design colorimetric sensors to monitor chemical toxicants in clinical, environment, foods, and many other related samples.  相似文献   

16.
噻唑环是一类重要的含氮硫杂原子的五元芳杂环,其特殊的结构使得噻唑类化合物在化学、药学、生物学和材料科学等诸多领域具有广阔的应用前景,显示出巨大的开发价值,受到广泛关注.本文结合作者的研究工作,参考国内外近五年文献,系统地综述了噻唑类化合物在医药、农药、材料、生物染色剂和超分子化学领域应用研究进展.  相似文献   

17.
The electrocatalytic properties of boron-doped diamond (BDD) electrodes have been considered for a variety of sensing applications. The unusual electrochemical properties of BDD include a large potential window, a small background current, and better resistance to fouling than other carbon-based electrodes. The use of BDD for remediation and environmental sensing applications has recently attracted the interest of the sensor research community. This review focuses on recent developments that involve the use of BDD as an environmentally friendly sensing material for environmental analysis. The electrochemical properties of boron-doped diamond that has undergone surface modification (e.g., with metals or enzymes) will be considered. Recent achievements involving the use of BDD electrodes for detecting pesticides, mycotoxins, peroxides, and phenolic compounds are considered.  相似文献   

18.
19.
Electrochemiluminescence (ECL) is a kind of luminescent phenomenon caused by electrochemical reactions. Based on the advantages of ECL including low background, high sensitivity, strong spatiotemporal controllability and simple operation, ECL imaging is able to visualize the ECL process, which can additionally achieve high throughput, fast and visual analysis. With the development of optical imaging technique, ECL imaging at micro- or nanoscale has been successfully applied in immunoassay, cell imaging, biochemical analysis, single-nanoparticle detection and study of mechanisms and kinetics of reactions, which has attracted extensive attention. In this review, the basic principles and apparatus of ECL imaging were briefly introduced at first. Then several latest and representative applications of ECL imaging based on nanomaterials and micro-/nanostructures were overviewed. Finally, the superiorities and challenges in ECL imaging for further development were discussed.  相似文献   

20.
电解水制氢技术操作简单、产物纯度高,是一种前景广阔的绿色制氢方式.然而,阳极析氧反应(OER)具有较高的热力学电势和缓慢的动力学,严重阻碍了电解水制氢技术的大规模工业应用.近年来,人们发现利用较低热力学电势的尿素氧化反应(UOR)取代阳极OER能够同时实现氢气的节能生产和尿素废水的净化.但这种技术的挑战在于尿素电解过程...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号