首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New Phosphido-bridged Multinuclear Complexes of Ag and Zn. The Crystal Structures of [Ag3(PPh2)3(PnBu2tBu)3], [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2, PnPr3), [Ag4(PPh2)4(PEt3)4]n, [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2, PnBu3, PEt2Ph), [Zn4(PhPSiMe3)4Cl4(C4H8O)2] and [Zn4(PtBu2)4Cl4] AgCl reacts with Ph2PSiMe3 in the presence of tertiary Phosphines (PnBu2tBu, PMenPr2, PnPr3 and PEt3) to form the multinuclear complexes [Ag3(PPh2)3(PnBu2tBu)3] 1 , [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2 2 , PnPr3 3 ) and [Ag4(PPh2)4(PEt3)4]n 4 . In analogy to that ZnCl2 reacts with Ph2PSiMe3 and PRR′2 to form the multinuclear complexes [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2 5 , PnBu3 6 , PEt2Ph 7 ). Further it was possible to obtain the compounds [Zn4(PhPSiMe3)4Cl4(C4H8O)2] 8 and [Zn4(PtBu2)4Cl4] 9 by reaction of ZnCl2 with PhP(SiMe3)2 and tBu2PSiMe3, respectively. The structures were characterized by X-ray single crystal structure analysis. Crystallographic data see “Inhaltsübersicht”.  相似文献   

2.
Mononuclear terbium and erbium complexes of the composition Ln(mbtF)3phen and the dinuclear complex Tb2(mbtF)4(OH)2(phen)2 (mbtF is 4,5,6,7-tetrafluoro-2-mercaptobenzothiazolate, phen is 1,10-phenanthroline) were synthesized. The structures of the complexes Er(mbtF)3phen and Tb2(mbtF)4(OH)2(phen)2 were determined by X-ray diffraction. In the solid state, the terbium and erbium complexes exhibit intense metal-centered photoluminescence. Based on the complexes Ln(mbtF)3phen, double-layer organic light-emitting diodes (OLEDs) were assembled. These OLEDs exhibit electroplex emission with a band maximum at 630 nm.  相似文献   

3.
The osmium nitride complex [OsVI(NH3)4N]3+ undergoes a one-electron reduction in acetonitrile to give [OsV(N)(NH3)4]2+, which further reacts by nitride coupling to give the μ-dinitrogen osmium complex [(CH3CN)(NH3)4OsII(N2)OsII(NH3)4(CH3CN)]4+. The formation of the μ-dinitrogen osmium complex is promoted by the presence of perchlorate anion, which causes the deposition of [(CH3CN)(NH3)4OsII(N2)OsII(NH3)4(CH3CN)](ClO4)4 on the electrode surface upon repetitive voltammetric scans.  相似文献   

4.
Methods were developed for the controlled thermal synthesis of high-spin cubane-like pivalates {MII 43−OR)4} (M = Co or Ni; R = H or Me) starting from mono-and polynuclear complexes. The solid-state thermal decomposition of the known pivalate clusters [MII 43−OMe)4−(μ2−OOCBut)22−OOCBut)2(MeOH)4] and the new clusters [M4II3)−OH41−OOCBut)3−(μ−(NH2)2C6H2Me2)31−(NH2)2C6H2Me2)3]+(OOCBut)− (M = Co or Ni) was studied by differential scanning calorimetry and thermogravimetry. The thermolysis of cubane-like CoII and NiII pivalates is a destructive process. The phase composition of the decomposition products is determined by the nature of coordinated ligands and the structural features of the metal core.  相似文献   

5.
The reactivity of the metalloligand [Pt2(μ-S)2(PPh3)4] with the boron-functionalized alkylating agents BrCH2(C6H4)B(OR)2 (R = H or C(CH3)2) was investigated by electrospray ionization mass spectrometry (ESI-MS) in real time using pressurized sample infusion (PSI). The macroscopic reaction of [Pt2(μ-S)2(PPh3)4] with one mole equivalent of alkylating agents BrCH2(C6H4)B{OC(CH3)2}2 and BrCH2(C6H4)B(OH)2 gave the dinuclear monocationic μ-sulfide thiolate complexes [Pt2(μ-S){μ-SCH2(C6H4)B{OC(CH3)2}2}(PPh3)4]+ and [Pt2(μ-S){μ-S+CH2(C6H4)B(OH)(O?)}(PPh3)4]. The products were isolated as the [PF6]? salt and zwitterion, respectively, and fully characterized by ESI-MS, IR, 1H and 31P NMR spectroscopy, and single-crystal X-ray structure determinations.  相似文献   

6.
Three dinuclear copper(II) complexes, [Cu2(L1)2(μ-ox)](ClO4)2?2(CH3CN), [Cu2(L2)2(μ-ox)](ClO4)2?H2O, and [Cu2(L3)2(μ-ox)](ClO4)2 where ox = oxalato; L = N,N-dimethyl,N′-benzylethane-1,2-diamine, L1, N,N-diethyl,N′-benzylethane-1,2-diamine, L2, N,N-diisoprophyl,N′-benzylethane-1,2-diamine, L3, were prepared and characterized by elemental analyses, spectral (IR, UV–Vis) data and molar conductance measurements. The crystal structures of [Cu2(L1)2(μ-ox)](ClO4)2?2(CH3CN) and [Cu2(L3)2(μ-ox)](ClO4)2 have been determined by single-crystal X-ray analysis. Solvatochromic behaviors were investigated in various solvents, showing positive solvatochromism. The effect of steric hindrance around the copper ion imposed by N-alkyl groups of the diamine chelates on the solvatochromism property of the complexes is discussed. Solvatochromism was also studied with different solvent parameter models using stepwise multiple linear regression method.  相似文献   

7.
The enthalpies of the solution of MZr2(PO4)3(M=Na, K, Rb or Cs) compounds have been measured by the help of a differential automatic isothermal Calvet calorimeter and the standard enthalpies of formation have been derived. The temperature dependencies of the standard heat capacity of the samples of crystalline NaZr2(PO4)3 and CsZr2(PO4)3 were studied between 7 and 340 K in an automatic adiabatic vacuum calorimeter. The main thermodynamic functions H 0(T)–H 0(0), S 0(T) andG 0(T)–H 0(0) have been determined. The Gibbs energies of formation of the NaZr2(PO4)3and CsZr2(PO4)3 at 298.15 K were calculated on the basis of these experimental data and the enthalpy of formation data. Qualitative explanations for the results observed were presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Ligand substitution of the triply deprotonated tetrapeptide ligand with bulky α-carbon substituents, in the tetrapeptide complexes of Cu(II) and Ni(II) by the bidentate ligands 2,2-bipyridine and 1,10-phenanthroline has been studied. The mechanism in the CuII(H-3A4)2? and the CuII(H-3F4)2? complexes shows a proton-assisted nucleophilic attack, and the CuII(H-3V4)2? shows both proton-assisted and direct equatorial nucleophilic attack by the bidentate ligands. A factor of ten decrease in the rate of substitution from CuII(H-3A4)2? to CuII(H-3V4)2?, and also CuII(H-3F4)2? is an indication of a steric hindrance on the substitution rate because of atom overcrowding due to the size of the α-carbon substituents in the CuII(H-3V4)2? and CuII(H-3F4)2? complexes. The substitution of the triply deprotonated tetrapeptide ligand in NiII(H-3A4)2? by 2,2-bipyridine and 1,10-phenanthroline shows a kinetic behaviour completely different to that of the Cu(II)-tetrapeptide complexes. Only a direct equatorial nucleophilic attack by the bidentate ligands has been observed.  相似文献   

9.
Bis(disulfido)bridged NbIV cluster oxalate complexes [Nb2(S2)2(C2O4)4]4– were prepared by ligand substitution reaction from the aqua ion [Nb2(μ‐S2)2(H2O)8]4+ and isolated as K4[Nb2(S2)2(C2O4)4] · 6 H2O ( 1 ), (NH4)6[Nb2(S2)2(C2O4)4](C2O4) ( 2 ) and Cs4[Nb2(S2)2(C2O4)4] · 4 H2O ( 3 ). The crystal structures of 1 and 2 were determined. The crystals of 1 belong to the space group P1, a = 720.94(7) pm, b = 983.64(10) pm, c = 1071.45(10) pm, α = 109.812(1)°, β = 91.586(2)°, γ = 105.257(2)°. The crystals of 2 are monoclinic, space group C2/c, a = 1567.9(2) pm, b = 1906.6(3) pm, c = 3000.9(4) pm, β = 95.502(2)°. The packing in 2 shows alternating layers of cluster anions and of ammonium/uncoordinated oxalates perpendicular to the [1 0 1] direction. Vibration spectra, electrochemistry and thermogravimetric properties of the complexes are also discussed.  相似文献   

10.
Syntheses and Crystal Structures of [Cu4(As4Ph4)2(PRR′2)4], [Cu14(AsPh)6(SCN)2(PEt2Ph)8], [Cu14(AsPh)6Cl2(PRR′2)8], [Cu12(AsPh)6(PPh3)6], [Cu10(AsPh)4Cl2(PMe3)8], [Cu12(AsSiMe3)6(PRR′2)6], and [Cu8(AsSiMe3)4(PtBu3)4] (R, R′ = Organic Groups) Through the reaction of CuSCN with AsPh(SiMe3)2 in the presence of tertiary phosphines the compounds [Cu4(As4Ph4)2(PRR′2)4] ( 1 – 3 ) ( 1 : R = R′ = nPr, 2 : R = R′ = Et; 3 : R = Me, R′ = nPr) and [Cu14(AsPh)6(SCN)2(PEt2Ph)8] ( 4 ) can be synthesised. Using CuCl instead of CuSCN results to the cluster complexes [Cu14(AsPh)6Cl2(PRR′2)8] ( 5–6 ) ( 5 : R = R′ = Et; 6 : R = Me, R′ = nPr), [Cu12(AsPh)6(PPh3)6] ( 7 ) and [Cu10(AsPh)4Cl2(PMe3)8] ( 8 ). Through reactions of CuOAc with As(SiMe3)3 in the presence of tertiary phosphines the compounds [Cu12(AsSiMe3)6(PRR′2)6] ( 9 – 11 ) ( 9 : R = R′ = Et; 10 : R = Ph, R′ = Et; 11 : R = Et, R′ = Ph) and [Cu8(AsSiMe3)4(PtBu3)4] ( 12 ) can be obtained. In each case the products were characterised by single‐crystal‐X‐ray‐structure‐analyses. As the main structure element 1 – 3 each have two As4Ph42–‐chains as ligands. In contrast 4 – 12 contain discrete AsR2–ligands.  相似文献   

11.
Complexes [Zn2(HL1)2(CH3COO)2] (1) and [Zn2(L2)2] (2) were synthesized with salicylaldehyde semicarbazone (H2L1) and salicylaldehyde-4-chlorobenzoyl hydrazone (H2LASSBio-1064, H2L2), respectively. The crystal structure of (1) was determined. Upon recrystallization of previously prepared [Zn2(HL2)2(Cl)2] (3) in 1:9 DMSO:acetone crystals of [Zn2(L2)2(H2O)2]·[Zn2(L2)2(DMSO)4] (3a) were obtained. The crystal structure of 3a was also determined. All crystal structures revealed the presence of phenoxo-bridged binuclear zinc(II) complexes.  相似文献   

12.
The reaction of DMA (C2(CO2Me)2) with MoS42−, WS42−, and VS43− led to six dithiolene compounds. (NEt4)2[Mo2(X)2(μ-S) 22-S2C2(CO2Me)2)2] 1, (X = O or S), (NEt4)2[V(η2-S2C2(CO2Me)2)3] 2a, (NEt4)2[V(O)(η2-S2C2(CO2Me)2)2] 2b, (NEt4)2[W2(S)2(μ-S)22-S2C2(CO2Me)2)2] 3, (NEt4)2[W(O)(η2-S2C2(CO2Me)2)2] 4 and (NEt4)2[W2(μ-S)22 -S2C2(CO2Me)2)4] 5 were isolated in the solid state. The structures of 2a, 3, 4 and 5 were determined by single crystal X-ray diffraction study. The compounds 1 and 2b were characterised in solution by ESMS (Electrospray Mass Spectrometry) and in the solid state by IR spectroscopy. ESMS data also allowed proposal of a reaction scheme which rationalizes the formation of the different species present in solution.  相似文献   

13.
Reactions of Ti(OBus)4 and Ti(OBun)4 with chloroacetic acids (mono-, di-, and tri-) were carried out in toluene in 1:1 and 1:2 molar ratios at room temperature to generate new precursors of titania. These modified alkoxides/oxo-alkoxides were characterized by spectroscopic methods. A solution of Ti(OBun)2(OOCCCl3)2 in toluene left for crystallization at ?30 °C yielded single crystals of the product Ti62-O)23-O)22-OC4H9)2(OC4H9)6(OOCCCl3)8. Single-crystal X-ray diffraction revealed the molecular structure to be composed of a hexanuclear unit in which two Ti2O10 units (made by two edge-sharing octahedra) are linked with two corner-sharing octahedra.  相似文献   

14.
Precise oxidation of FeII 43-OH)2(OOCBut)6(EtOH)6 afforded the mixed-valent hexanuclear complex [FeII 4FeIII 24-O)23-OOCBut)4(μ-OOCBut)6(HOOCBut)3(EtOH)]· ·HOOCBut. The structure of the latter was established by X-ray diffraction. The magnetic properties of the new complex were studied. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 900–903, May, 2006.  相似文献   

15.
Synthesis and Crystal Structure of Metal(I) Hydrogen Sulfates – Ag(H3O)(HSO4)2, Ag2(HSO4)2(H2SO4), AgHSO4, and Hg2(HSO4)2 Hydrogen sulfates Ag(H3O)(HSO4)2, Ag2(HSO4)2 · (H2SO4), and AgHSO4 have been synthesized from Ag2SO4 and sulfuric acid. Hg2(HSO4)2 was obtained from metallic mercury and 96% sulfuric acid as starting materials. The compounds were characterized by X‐ray single crystal structure determination. Ag(H3O)(HSO4)2 belongs to the structure type of Na(H3O)(HSO4). The silver atom is coordinated by 6 + 2 oxygen atoms. In the structure, there are dimers and chains of hydrogen bonded HSO4 tetrahedra. Dimers and chains are connected by the H3O+ ion to form a three dimensional hydrogen network. Ag2(HSO4)2(H2SO4) crystallizes isotypic to Na2(HSO4)2(H2SO4). The coordination number of silver is 6 + 1. The structure of Ag2(HSO4)2(H2SO4) is characterized by hydrogen bonded trimers of HSO4 tetrahedra, which are further connected to chains. For the recently published structure of AgHSO4 the hydrogen bonding system was discussed. There are tetrameres and chains, connected by bifurcated hydrogen bonds. The structure of Hg2(HSO4)2 contains Hg22+ cations with Hg–Hg distance of 2.509 Å. Every mercury atom is coordinated by one oxygen atom at shorter distance (2.18 Å) and three ones at longer distances (2.57 to 3.08 Å). The HSO4 tetrahedra form zigzag chains by hydrogen bonds.  相似文献   

16.
用液相反应-前驱物烧结法制备了Cr2(WO4)3和Cr2(MoO4)3粉体。298~1 073 K的原位粉末X射线衍射数据表明Cr2(WO4)3和Cr2(MoO4)3的晶胞体积随温度的升高而增大, 本征线热膨胀系数分别为(1.274±0.003)×10-6 K-1和(1.612±0.003)×10-6 K-1。用热膨胀仪研究了Cr2(WO4)3和Cr2(MoO4)3在静态空气中298~1 073 K范围内热膨胀行为,即开始表现为正热膨胀,随后在相转变点达到最大值,最后表现为负热膨胀,其负热膨胀系数分别为(-7.033±0.014)×10-6 K-1和(-9.282±0.019)×10-6 K-1。  相似文献   

17.
The compound Mo(η-C5H4(CH2)2SPrn)2(SPrn)2 acts as a bidentate ligand giving the heteronuclear bi-metallic compounds [Mo(η-C5H4CH2CH2SPrn)2-(SPrn)2(PtCl2)],[Mo(η-C5H4CH2CH2SPrn)2(SPrn)2(PdCl2)2], [Mo(η-C5C4CH2CH2SPrn)2(SPrn)2(RhCl3)2], [Mo(η-C5H4CH2CH2SPrn)2(μ-SPrn)2Rh(dppe)]BF4, [Mo(η-C5H4CH2CH2SPrn)2(μ-SPrn)2(COD)Rh]Cl, [Mo(η-C5H4CH2CH2SPrn)2-(μ-SPrn)2Pt(PPh3)2](PF6)2, and the compound [Mo(η-C5H4(CH2)2-μ-SPh)2Cl2Rh(COD)]Cl bonds via the ring-sulphur substituents giving [Mo(η-C5H4(CH2)2-μ-SPh)2-Cl2Rh(COD)]Cl.  相似文献   

18.
The glass formation region boundaries were found in the systems Al2(SO4)3-MSO4-H2O, where M = Cd2+, Zn2+, and Mg2+, and Al2(SO4)3-Fe2(SO4)3-H2O. The causes of the differences in glass-forming ability between the studied systems were analyzed. The structures and properties of glassy Al2(SO4)3 · 11H2O and Fe2(SO4)3 · 11H2O were compared.  相似文献   

19.
This work demonstrates a new nonconventional ligand design, imidazole/pyridine‐based nonsymmetrical ditopic ligands ( 1 and 1 S ), to construct a dynamic open coordination cage from nonsymmetrical building blocks. Upon complex formation with Pd2+ at a 1:4 molar ratio, 1 and 1 S initially form mononuclear PdL4 complexes (Pd2+( 1 )4 and Pd2+( 1 S )4) without formation of a cage. The PdL4 complexes undergo a stoichiometrically controlled structural transition to Pd2L4 open cages ((Pd2+)2( 1 )4 and (Pd2+)2( 1 S )4) capable of anion binding, leading to turn‐on anion binding. The structural transitions between the Pd2L4 open cage and the PdL4 complex are reversible. Thus, stoichiometric addition (2 equiv) of free 1 S to the (Pd2+)2( 1 S )4 open cage holding a guest anion ((Pd2+)2( 1 S )4?G?) enables the structural transition to the Pd2+( 1 S )4 complex, which does not have a cage and thus causes the release of the guest anion (Pd2+( 1 S )4+G?).  相似文献   

20.
The reactions of Ru3(CO)12with 4-phenylbut-3-an-2-ine (1a), 3-phenyl-1-p-tolylprop-2-an-1-ine (1b), and 1,3-diferrocenylprop-2-an-1-ine (1c) afforded the Ru2(CO)6(-H)(O=C(R1)C(H)=C(R2)) (2) and Ru3(CO)8(O=C(R1)C(H)=C(R2))2(3) complexes. Dissolution of these complexes in CHCl3or CH2Cl2gave rise to the Ru2(CO)4(-Cl)2(O=C(R1)C(H)=C(R2)) complexes (4). The thermal transformations of complexes 2and 3in the presence of an excess of the ligand yielded the Ru2O2(CO)4(3-OC(R1)C(H)(CH2R2)C(R2)C(H)C(R1))2(5) and Ru(CO)2(O=C(R1)C(H)=C(R2))2(6) complexes. Analogous complexes were obtained upon more prolonged heating of the starting reaction mixtures. The structures of complexes 4a, 5a, and 6cwere established by X-ray diffraction analysis and confirmed by spectroscopic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号