首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H/D exchange is a method commonly used to probe molecular structure. The majority of studies in the gas phase have involved protonated molecular ions. The present study gives attention to molecular ions formed by coordination with a sodium ion. In particular, ND(3) is reacted with sodiated glycine oligomers, Gly(n)(), where n = 1-5, and the results are interpreted using density functional calculations. Experimentally, Gly(1)Na(+), Gly(4)Na(+), and Gly(5)Na(+) all undergo three fast exchanges with ND(3), while Gly(2)Na(+) and Gly(3)Na(+) undergo one fast and two slow exchanges with ND(3). The methyl esters Gly(3)OMeNa(+) and Gly(5)OMeNa(+) do not exchange with ND(3). In agreement with earlier experimental studies, theoretical calculations show that the lowest-energy conformers of the sodiated glycine oligomers are charge-solvated structures. Calculations further indicate that, in the process of H/D exchange with ND(3), sodiated monoglycine and tetraglycine adopt zwitterionic structures, sodiated diglycine adopts a salt-bridge form, and sodiated triglycine takes on an ion-stabilized ion pair form. Sodiated monoglycine and diglycine exchange via an onium-ion mechanism. The proposed exchange mechanisms require a carboxylic acid hydrogen to complete the exchange, which is in agreement with the experimental results showing that no exchange occurs with methyl ester glycine oligomers. These studies clearly demonstrate that, in the process of H/D exchange, noncovalent complexation of the exchange reagent provides the energy required to access intermediates structurally distinct from the parent ions. H/D exchange is facile for these intermediates. Contrary to the assumption often expressed in earlier studies, H/D exchange kinetics may not directly reflect ion structures.  相似文献   

2.
The conformational dependence of the gas-phase hydrogen/deuterium (H/D) exchange of nucleotide-5-monophosphate anions with the H/D exchange reagent D2S is reported here. The electrospray-generated [M-H]- anions of adenosine-5'-monophosphate, adenosine-5'-carboxylic acid, ribitol-5-phosphate, and 2-deoxy-ribitol-5-phosphate were reacted with D2S in the gas phase. Their reactivity (adenosine-5'-monophosphate exchanged 2 of 5 labile hydrogens, adenosine-5'-carboxylic acid exchanged 1 of 4, ribitol-5-phosphate exchanged 2 of 3, and 2-deoxy-ribitol-5-phosphate exchanged 1 of 2) suggests that the hydroxyl group in the 2 position of the ribose sugar and the amino hydrogen on the nucleobase do not exchange readily with D2S. Semiempirical molecular orbital calculations suggest that the labile hydrogens in these positions are thermodynamically facile to exchange but as a conformation inaccessible to the presumed phosphate anion, consistent with a mechanism in which the phosphate anion complexes with the exchange reagent and assists H/D exchange at a neighboring site.  相似文献   

3.
The gas phase H/D exchange reaction of bradykinin ions, as well as fragment ions of bradykinin generated through collisions in an orifice skimmer region, have been studied with a linear quadrupole ion trap (LIT) reflectron time-of-flight (rTOF) mass spectrometer system. The reaction in the trap takes only tens of seconds at a pressure of few mTorr of D2O or CD3OD. The exchange rate and hydrogen exchange level are not sensitive to the trapping q value over a broad range, provided q is not close to the stability boundary (q = 0.908). The relative rates and hydrogen exchange levels of protonated and sodiated +1 and +2 ions are similar to those observed previously by others with a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer system. The doubly and triply protonated ions show multimodal isotopic distributions, suggesting the presence of several different conformations. The y fragment ions show greater exchange rates and levels than a or b ions, and when water or ammonia is lost from the fragment ions, no exchange is observed.  相似文献   

4.
The gas-phase structures of protonated (deoxy)nucleoside-5'- and 3'-monophosphates (mononucleotides) have been examined by the use of gas-phase hydrogen/deuterium (H/D) exchange and high-field Fourier-transform ion cyclotron resonance mass spectrometry. These nucleotides were reacted with three different deuterating reagents: ND3, D2O, and D2S, of which ND3 was the most effective. All mononucleotides fully exchanged their labile hydrogen for deuterium with ND3 with the exception of deoxycytidine-3'-monophosphate, deoxyadenosine-5'-monophosphate, adenosine-5'-monophosphate, and adenosine-3'-monophosphate. Semiempirical calculations demonstrate the presence of hydrogen bonding upon protonation of the purine mononucleotides which may lead to incomplete H/D exchange. H/D exchange rates differed between the deoxymononucleotides and the ribomononucleotides, suggesting that the 2'-OH group plays an important role in the exchange process. Reactions of nucleosides and mononucleotides with D2O demonstrate that a structure-specific long-lived ion-molecule complex between D2O and the mononucleotide involving the phosphate group is necessary for exchange to overcome the high-energy activation barrier. In contrast, a structure-specific long-lived ion-molecule complex between the mononucleotides and ND3 is not required for exchange to occur.  相似文献   

5.
The gas-phase interaction of sodiated amino acids and sodiated amino acid methyl esters with various deuterium donors is investigated by combining results of H/D exchange reactions with those from density functional theory and molecular dynamics calculations. Discrepancy between experimentally and theoretically obtained structures for sodium cationized amino acids is explained by deuterium donor caused perturbation of the most stable amino acid conformation. Detailed study of H/D exchange mechanism on sodiated amino acids shows that the H/D exchange reaction is preceded by a multistep quasi-isoenergetic transition (perturbation) from a charge solvated to zwitterionic structure in the amino acid. Although the computation refers to the system AlaNa(+) and D(2)O, these mechanisms apply to all amino acids, except those where a functional side-chain group takes part in the perturbation process. The suggested perturbation mechanism applies also for other deuterium donors such as CD(3)OD or even ND(3) and indicates that a single water molecule suffices to convert the sodiated amino acid from charge solvated to zwitterionic form.  相似文献   

6.
Fast atom bombardment mass spectrometry in the positive mode was used for the characterization of sodiated glycerol phosphatidylcholines. The relative abundance (RA) of the protonated species is similar to the RA of the sodiated molecular species. The sodiated fragment ion, [M + Na - 59](+), corresponding to the loss of trimethylamine, and other sodiated fragment ions, were also observed. The decomposition of the sodiated molecule is very similar for all the studied glycerol phosphatidylcholines, in which the most abundant ion corresponds to a neutral loss of 59 Da. Upon collision-induced dissociation (CID) of the [M + Na](+) ion informative ions are formed by the losses of the fatty acids in the sn-1 and sn-2 positions. Other major fragment ions of the sodiated molecule result from loss of non-sodiated and sodiated choline phosphate, [M + Na - 183](+), [M + Na - 184](+.) and [M + Na - 205](+), respectively. The main CID fragmentation pathway of the [M + Na - 59](+) ion yields the [M + Na - 183](+) ion, also observed in the CID spectra of the [M + Na](+) molecular ion. Other major fragment ions are [M + Na - 205](+) and the fragment ion at m/z 147. Collisional activation of [M + Na - 205](+) results in charge site remote fragmentation of both fatty acid alkyl chains. The terminal ions of these series of charge remote fragmentations result from loss of part of the R(1) or R(2) alkyl chain. Other major informative ions correspond to acylium ions.  相似文献   

7.
The interaction between metaphosphate chains and the metal ions Ca2+ and Eu3+ has been studied in water by Eu3+ luminescence, infrared absorption, and 31P NMR spectroscopy. Two main families of sites could be identified for the metal ions in the aqueous polyphosphate colloidal systems: (1) cagelike sites provided by the polyphosphate chain and (2) a family which arises following saturation of cagelike sites. Occupation of this second family leads to supramolecular interactions between polyphosphate chains and the consequent destabilization of the colloidal system. In the polyphosphate-Ca2+ system, this destabilization appears as a coacervation process. Equilibrium existing between colloidal species as a function of the compositions could be reasoned based on the spectroscopic measurements. The determination of coordination numbers and the correlation of the results with the observation of coacervates show that Eu3+ luminescence properties can be used to probe in a unique way the coacervation process.  相似文献   

8.
在D2O化学反应气条件下研究了环丙烷衍生物的H/D交换反应特性.发现了三种新的产物离子[M+1]+、[M+2]+和[M+3]+.应用碰撞诱导碎裂(CID)技术研究了这些离子的碎裂反应特性.实验结果表明三种新的产物离子是由反应物与试剂离子之间发生H/D交换反应生成的.并获得了环丙烷衍生物结构中活泼氢位置及其数量的信息.  相似文献   

9.
Gas-phase hydrogen-deuterium (H/D) exchange reactions involving four isomeric cyclopropane derivatives were investigated under chemical ionization (CI) conditions, using D(2)O and CD(3)OD as reagent gases. There are abundant ions at [M + 1](+), [M + 2](+) and [M + 3](+) in the D(2)O and CD(3)OD positive-ion CI mass spectra of the two isomer pairs 1, 2 and 3, 4. Their CI mass spectra are identical with each pair, and so are the collision-induced dissociation (CID) spectra of ions [M + 1](+), [M + 2](+) and [M + 3](+) of each of the two isomer pairs. The CID spectra of [M + 1](+) ions indicate that they have common D/H exchange reactions within each pair, which take place between molecular ions and deuterium-labeling reagents to form the [M - H + D](+) ions. Those of their [M + 2](+) ions show that they have common D/H exchange reactions within each pair, which form the [M(d1) + H](+) ions. Those of their [M + 3](+) ions show that they have common D/H exchange reactions within each pair, which take place between the [M(d1)] and deuterium-labeling reagents to produce [M(d2) + H](+) for the isomer pair 1, 2 and [M(d1) + D](+) for the isomer pair 3, 4. The number and position, and active order of the active hydrogen atoms of the isomer pairs 1, 2 and 3, 4 were determined. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

10.
It is well-known that metal ion complexes are essential in various biological systems, including those with adenosine nucleotides which are substrates for a large number of enzymatic processes. The interactions of various metal ions with adenosine nucleotides have been intensively studied by multinuclear NMR spectroscopy. Nucleotides are polydentate ligands with various potential binding sites, including nitrogen atoms on the purine base, hydroxyl groups on the ribose sugar, and negatively charged oxygen atoms in the phosphate group. Depending on the experimental conditions (e.g. pH, concentration range, etc.) and on the size and nature of the metal ions, monodentate, or multidentate coordination to these donor atoms are possible. The review focuses on the applications of different NMR techniques in identifying the stoichiometry and the mode of metal binding in complexes formed with the most important adenosine nucleotides, like adenosine-5′-mono-, di- and triphosphates (AMP, ADP and ATP). Ligand exchange dynamics for some metal ion complexes are also presented.  相似文献   

11.
The hydrogen/deuterium (H/D) exchange of gas-phase ions of holo- and apo-myoglobin has been studied by confining the ions in a linear quadrupole ion trap with D(2)O or CD(3)OD at a pressure of several mTorr. Apo-myoglobin ions were formed by collision-induced dissociation of holo-myoglobin ions between the orifice and skimmer of the ion sampling system. The exchange takes place on a time scale of seconds. Earlier cross section measurements have shown that holo-myoglobin ions can have more compact structures than apo-myoglobin. Despite this, both holo-myoglobin and apo-myoglobin in charge states +8 to +14 are found to exchange nearly the same number of hydrogens (ca. 103) in 4 s. It is possible the ions fold or unfold to new conformations on the much longer time scale of the exchange experiment compared with the cross section measurements.  相似文献   

12.
Doubly-protonated bradykinin (RPPGFSPFR) and an angiotensin III analogue (RVYIFPF) were subjected to hydrogen/deuterium (H/D) exchange with CD(3)OD in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. A bimodal distribution of deuterium incorporation was present for bradykinin after H/D exchange for 90 s at a CD(3)OD pressure of 4 x 10(-7) Torr, indicating the existence of at least two distinct populations. Bradykinin ion populations corresponding to 0-2 and 5-11 deuteriums (i.e., D(0), D(1), D(2), D(5), D(6), D(7), D(8), D(9), D(10), and D(11)) were each monoisotopically selected and fragmented via sustained off-resonance irradiation (SORI) collision-induced dissociation (CID). The D(0)-D(2) ion populations, which correspond to the slower exchanging population, consistently require lower SORI amplitude to achieve a similar precursor ion survival yield as the faster-reacting (D(5)-D(11)) populations. These results demonstrate that conformation/protonation motif has an effect on fragmentation efficiency for bradykinin. Also, the partitioning of the deuterium atoms into fragment ions suggests that the C-terminal arginine residue exchanges more rapidly than the N-terminal arginine. Total deuterium incorporation in the b(1)/y(8) and b(2)/y(7) ion pairs matches very closely the theoretical values for all ion populations studied, indicating that the ions of a complementary pair are likely formed during the same fragmentation event, or that no scrambling occurs upon SORI. Deuterium incorporation into the y(1)/a(8) pseudo-ion pair does not closely match the expected theoretical values. The other peptide, doubly-protonated RVYIFPF, has a trimodal distribution of deuterium incorporation upon H/D exchange with CD(3)OD at a pressure of 1 x 10(-7) Torr for 600 s, indicating at least three distinct ion populations. After 90 s of H/D exchange where at least two distinct populations are detected, the D(0)-D(7) ion populations were monoisotopically selected and fragmented via SORI-CID over a range of SORI amplitudes. The precursor ion survival yield as a function of SORI amplitude falls into two distinct behaviors corresponding to slower- and faster-reacting ion populations. The slower-reacting population requires larger SORI amplitudes to achieve the same precursor ion survival yield as the faster exchanging population. Total deuterium incorporation into the y(2)/b(5) ion pairs matches closely the theoretical values over all ion populations and SORI amplitudes studied. This result indicates the y(2) and b(5) ions are likely formed by the same mechanism over the SORI amplitudes studied.  相似文献   

13.
The utility of post-source decay (PSD) matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was investigated for the structural analysis of phosphatidylcholine (PC). PC did not produce detectable negative molecular ion from MALDI, but positive ions were observed as both [PC+H](+) and [PC+Na](+). The PSD spectra of the protonated PC species contained only one fragment corresponding to the head group (m/z 184), while the sodiated precursors produced many fragment ions, including those derived from the loss of fatty acids. The loss of fatty acid from the C-1 position (sn-1) of the glycerol backbone was favored over the loss of fatty acid from the C-2 position (sn-2). Ions emanating from the fragmentation of the head group (phosphocholine) included [PC+Na-59](+), [PC+Na-183](+) and [PC+Na-205](+), which corresponded to the loss of trimethylamine (TMA), non-sodiated choline phosphate and sodiated choline phosphate, respectively. Other fragments reflecting the structure of the head group were observed at m/z 183, 146 and 86. The difference in the fragmentation patterns for the PSD of [PC+Na](+) compared to [PC+H](+) is attributed to difference in the binding of Na(+) and H(+). While the proton binds to a negatively charged oxygen of the phosphate group, the sodium ion can be associated with several regions of the PC molecule. Hence, in the sodiated PC, intermolecular interaction of the negatively charged oxygen of the phosphate group, along with sodium association at multiple sites, can lead to a complex and characteristic ion fragmentation pattern. The preferential loss of sn-1 fatty acid group could be explained by the formation of an energetically favorable six-member ring intermediate, as apposed to the five-member ring intermediate formed prior to the loss of sn-2 fatty acid group.  相似文献   

14.
Gas-phase H/D exchange experiments with CD3OD and D2O and quantum chemical ab initio G3(MP2) calculations were carried out on protonated histidine and protonated histidine methyl ester in order to elucidate their bonding and structure. The H/D exchange experiments show that both ions have three equivalent fast hydrogens and one appreciably slower exchangeable hydrogen assigned to the protonated amino group participating in a strong intramolecular hydrogen bond (IHB) with the nearest N(sp2) nitrogen of the imidazole fragment and to the distal ring NH-group, respectively. It is taken for granted that the proton exchange in the IHB is much faster than the H/D exchange. Unlike in other protonated amino acids (glycine, proline, phenylalanine, tyrosine, and tryptophan) studied earlier, the exchange rate of the carboxyl group in protonated histidine is slower than that of the amino group. The most stable conformers and the enthalpies of neutral and protonated histidine and its methyl ester are calculated at the G3(MP2) level of theory. It is shown that strong intramolecular hydrogen bonding between the amino group and the imidazole ring nitrogen sites is responsible for the stability and specific properties of the protonated histidine. It is found that the proton fluctuates between the amino and imidazole groups in the protonated form across an almost vanishing barrier. Proton affinity (PA) of histidine calculated by the G3(MP2) method is 233.2 and 232.4 kcal mol(-1) for protonation at the imidazole ring and at the amino group nitrogens, respectively, which is about 3-5 kcal mol(-1) lower than the reported experimental value.  相似文献   

15.
One water molecule stabilizes the cationized arginine zwitterion   总被引:1,自引:0,他引:1  
Singly hydrated clusters of lithiated arginine, sodiated arginine, and lithiated arginine methyl ester are investigated using infrared action spectroscopy and computational chemistry. Whereas unsolvated lithiated arginine is nonzwitterionic, these results provide compelling evidence that attachment of a single water molecule to this ion makes the zwitterionic form of arginine, in which the side chain is protonated, more stable. The experimental spectra of lithiated and sodiated arginine with one water molecule are very similar and contain spectral signatures for protonated side chains, whereas those of lithiated arginine and singly hydrated lithiated arginine methyl ester are different and contain spectral signatures for neutral side chains. Calculations at the B3LYP/6-31++G** level of theory indicate that solvating lithiated arginine with a single water molecule preferentially stabilizes the zwitterionic forms of this ion by 25-32 kJ/mol and two essentially isoenergetic zwitterionic structure are most stable. In these structures, the metal ion either coordinates with the N-terminal amino group and an oxygen atom of the carboxylate group (NO coordinated) or with both oxygen atoms of the carboxylate group (OO coordinated). In contrast, the OO-coordinated zwitterionic structure of sodiated arginine, both with and without a water molecule, is clearly lowest in energy for both ions. Hydration of the metal ion in these clusters weakens the interactions between the metal ion and the amino acid, whereas hydrogen-bond strengths are largely unaffected. Thus, hydration preferentially stabilizes the zwitterionic structures, all of which contain strong hydrogen bonds. Metal ion size strongly affects the relative propensity for these ions to form NO or OO coordinated structures and results in different zwitterionic structures for lithiated and sodiated arginine clusters containing one water molecule.  相似文献   

16.
Adsorptive properties of MgMn-3-300 (MgMn-type layered double hydroxide with Mg/Mn mole ratio of 3, calcined at 300 degrees C) for phosphate were investigated in phosphate-enriched seawater with a concentration of 0.30 mg-P/dm3. It showed the highest phosphate uptake from the seawater among the inorganic adsorbents studied (hydrotalcite, calcined hydrotalcite, activated magnesia, hydrous aluminum oxide, manganese oxide (delta-MnO2)). The phosphate uptake by MgMn-3-300 reached 7.3 mg-P/g at an adsorbent/solution ratio of 0.05 g/2 dm3. The analyses of the uptakes of other constituents (Na+, K+, Ca(+, Cl-, and SO(2-)4) of seawater showed that the adsorbent had a markedly high selectivity for the adsorption of phosphate ions. Effects of initial phosphate concentration, temperature, pH, and salinity on phosphate uptake were investigated in detail by a batch method. The phosphate uptake increased slightly with an increase in the adsorption temperature. The adsorption isotherm followed Freundlich's equation with constants of logK(F)=1.25 and 1/n=0.65, indicating that it could effectively remove phosphate even from a solution of markedly low phosphate concentration as well as with large numbers of coexisting ions. The pH dependence showed a maximum phosphate uptake around pH 8.5. The pH dependence curve suggested that selective phosphate adsorption progresses mainly by the ion exchange of HPO(2-)4. The study on the effect of salinity suggested the presence of two kinds of adsorption sites in the adsorbent: one nonspecific site with weak interaction and one specific site with strong interaction. The effective desorption of phosphate could be achieved using a mixed solution of 5 M NaCl + 0.1 M NaOH (1 M = 1 mol/dm3), with negligible dissolution of adsorbent. The adsorbent had high chemical stability against the adsorption/desorption cycle; it kept a good phosphate uptake even after the repetition of the seventh cycle.  相似文献   

17.
18.
The usefulness of gas-phase H/D exchange is demonstrated to probe heterogeneous fragment and parent ion populations. Singly and multiply protonated peptides/proteins were fragmented by using sustained off-resonance irradiation collision-induced dissociation (SORI-CID). The fragments and the surviving precursor ions then all undergo H/D exchange in the gas-phase with either D(2)O or CD(3)OD under the same experimental conditions. Usually, 10 to 60 s of reaction time is adequate to monitor characteristic differences in the H/D exchange kinetic rates. These differences are then correlated to isomeric ion structures. The SORI-HDX method can be used to rapidly test fragment ion structures and provides useful insights into peptide fragmentation mechanisms.  相似文献   

19.
Gas-phase hydrogen/deuterium exchange of small oligonucleotides (dTG, dC(6) and C(6)) with CD(3)OD was performed in the second hexapole of a Fourier transform ion-cyclotron resonance (FTICR) mass spectrometer. Ion activation experiments were conducted by accelerating the ions at the entrance of the H/D exchange cell under conditions promoting exclusively collisional isomerization. These experiments allowed us to assess the presence of several conformers, and to probe the height of the isomerization barrier separating these conformers. Ion mobility experiments were also performed. Their results were consistent with the H/D exchange data. A model accounting for the competing isomerization and H/D exchange reactions is proposed. Comparing the ion acceleration experiments for H/D exchange and for ion mobility reveals that the most compact conformer displays the fastest H/D exchange. This observation shows that H/D exchange and ion mobility provide us with complementary information because hydrogen accessibility and macromolecule compactness are not univocally associated.  相似文献   

20.
Gas-phase hydrogen/deuterium (H/D) exchange reactions for deprotonated 2'-deoxy-5'-monophosphate and 2'-deoxy-3'-monophosphate nucleotides with D(2)O were performed in a quadrupole ion trap mass spectrometer. To augment these experiments, molecular modeling was also conducted to identify likely deprotonation sites and potential gas-phase conformations of the anions. A majority of the 5'-monophosphates exchanged extensively with several of the compounds completely incorporating deuterium in place of their labile hydrogen atoms. In contrast, most of the 3'-monophosphate isomers exchanged relatively few hydrogen atoms, even though the rate of the first two exchanges was greater than observed for the 5'-monophosphates. Mononucleotides that failed to incorporate more than two deuterium atoms under default reaction conditions were often found to exchange more extensively when reactions were performed under higher energy conditions. Integration of the experimental and theoretical results supports the use of a relay exchange mechanism and suggests that the exchange behavior depends highly on the identity and orientation of the nucleobase and the position and flexibility of the deprotonated phosphate moiety. These observations also highlight the importance of the distance between the various participating groups in addition to their gas-phase acidity and basicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号