首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mathematical formulation of the Dewar container sloshing dynamics for a partially filled liquid of cryogenic superfluid helium II driven by the gravity gradient or jitter accelerations associated with slew motion in a microgravity environment are studied. The numerical computation of sloshing dynamics is based on the non-inertia container bounded frame and the solution of time-dependent, three-dimensional partial differential equations subjected to the initial and boundary conditions. This study discloses that the capillary effect of sloshing dynamics governs the liquid-vapor interface fluctuations driven by the gravity gradient or jitter accelerations associated with slew motion in a microgravity environment. The peculiar behavior of superfluid helium in response to sloshing dynamics is also investigated.  相似文献   

2.
ACTUATIONOFSLOSHINGMODULATEDFORCEANDMOMENTONLIQUIDCONTAINERDRIVENBYJITTERACCELERATIONSASSOCIATEDWITHSIEWMOTIONINMICROGRAVITYR...  相似文献   

3.
The dynamical behavior of fluids affected by the asymmetric gravity gradient acceleration is studied. In particular the effect of surface tension on partially liquid filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank with and without a baffle have been investigated. Results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient acceleration indicate that the gravity gradient acceleration is equivalent to the combined effect of a twisting force and torsional moment acting on the spacecraft. As viscous force (between liquid and solid interface), and surface tension force (between liquid-vapor-solid interface) greatly contribute to the damping effect of slosh wave excitation, a rotating dewar with baffle provides more areas of liquid-solid and liquid-vapor-solid interfaces than that of a rotating dewar without baffle. Results show that the damping effect provided by the baffle reduces the amplitude of slosh wave excitation, lowers the fluid force, torque, and the moment arm of fluid torque fluctuations than that without baffle, and also lowers the degree of asymmetry in the liquid-vapor distribution.  相似文献   

4.
The Eshelby (static energy momentum) stress tensor, the angular momentum tensor and the dilatation flux are derived for anisotropic linear gradient elasticity in non-homogeneous materials. The divergence of these tensors gives the configurational forces, moments and work terms in gradient elasticity. There are several types of configurational forces, acting on the dislocation density and its gradient, on the inhomogeneities, proportional to the distortion, and linear and quadratic in the distortion gradient, and on the body force.  相似文献   

5.
6.
In this paper, a numerical model is developed to predict the cryogenic chilldown process of a vertical tube for both terrestrial and microgravity conditions. The flow field is covered by four distinct regions, which are single-phase vapor region, dispersed flow region, inverted annular flow region, and single-phase liquid region. Heat transfer mechanisms are dictated by the flow patters. A two-fluid model is employed to analyze the dispersed flow region and the inverted annular film boiling region. Gravity effect on the chilldown process is also investigated. Model results indicate that film boiling heat transfer decreases with decreasing gravity level for the bottom flooding condition. The model results show a good agreement with the experimental data.  相似文献   

7.

The lacunar-canalicular system (LCS) is acknowledged to directly participate in bone tissue remodeling. The fluid flow in the LCS is synergic driven by the pressure gradient and electric field loads due to the electro-mechanical properties of bone. In this paper, an idealized annulus Maxwell fluid flow model in bone canaliculus is established, and the analytical solutions of the fluid velocity, the fluid shear stress, and the fluid flow rate are obtained. The results of the fluid flow under pressure gradient driven (PGD), electric field driven (EFD), and pressure-electricity synergic driven (P-ESD) patterns are compared and discussed. The effects of the diameter of canaliculi and osteocyte processes are evaluated. The results show that the P-ESD pattern can combine the regulatory advantages of single PGD and EFD patterns, and the osteocyte process surface can feel a relatively uniform shear stress distribution. As the bone canalicular inner radius increases, the produced shear stress under the PGD or P-ESD pattern increases slightly but changes little under the EFD pattern. The increase in the viscosity makes the flow slow down but does not affect the fluid shear stress (FSS) on the canalicular inner wall and osteocyte process surface. The increase in the high-valent ions does not affect the flow velocity and the flow rate, but the FSS on the canalicular inner wall and osteocyte process surface increases linearly. In this study, the results show that the shear stress sensed by the osteocyte process under the P-ESD pattern can be regulated by changing the pressure gradient and the intensity of electric field, as well as the parameters of the annulus fluid and the canaliculus size, which is helpful for the osteocyte mechanical responses. The established model provides a basis for the study of the mechanisms of electro-mechanical signals stimulating bone tissue (cells) growth.

  相似文献   

8.
The near-field instability of variable property jets of air, CO2, and He, issued into the ambient air, has been investigated experimentally within normal gravity and microgravity fields. The density ratio to the ambient air is unity for air jets, more than unity (1.53) for CO2 jets, and less than unity (0.14) for He jets, respectively. The ratio of kinematic viscosity to the ambient air is unity for air jets, less than unity for CO2 jets (0.53), and more than unity for He jets (7.75), respectively. The jet velocity is varied from 0.4 to 1.8 m/s and then the jet Reynolds number varies from 60 for Helium jet to 2,000 for CO2 jet, while the Richardson number varies from negative to positive values. The motion of the jet is visualized using a laser tomographic method and recorded by a high-speed digital video camera with 250 frames/s. The result shows that the instability of the jet is intensified when Re > 800 while it is weakened at Re < 800 at the microgravity field, indicating that the viscosity plays an important role in weakening the instability. Under a normal gravity field, the buoyancy also becomes important. In order to quantify the instability criteria, the quantity of the instability is introduced, which consists of the Kelvin–Helmholtz instability, buoyancy effect and viscous effect. When the ratio of the sum of Kelvin–Helmholtz and buoyancy forces to viscous force exceeds a certain value, around 12 in the present study, the jet becomes unstable even when Re < 800. These results reveal that the instability of variable property jets is influenced by the Kelvin–Helmholtz instability, the viscous effect and the buoyancy effect.  相似文献   

9.
In this paper, the steady unidirectional flow of a rivulet, driven by interfacial shear and gravity, is considered. When the aspect ratio of the rivulet is small the pressure, velocity, flux and cross-sectional shape are determined in the form of asymptotic power series. The problem is also solved numerically without the small aspect ratio assumption. The analytical and numerical results are compared to test the range of validity of the asymptotics. Both sets of results are also compared with existing experimental data. Finally, the rivulet energy is considered to determine whether it is energetically favourable for a rivulet to split.  相似文献   

10.
旋转加速度计式重力梯度仪中的台体旋转误差会影响梯度测量精度。若以光栅角编码器作为旋转控制的角度测量元件,其安装误差会产生相应的旋转控制误差。为此,需要对光栅角编码器安装误差的产生机理进行分析,了解其对旋转加速度计式重力梯度仪测量精度的影响程度。利用光学技术方法测量光栅角编码器安装误差所引起的角速度和角加速度的变化,最后通过角位置补偿修正光栅角编码器安装误差以减小运动不平稳性对重力梯度测量的影响。实验表明该方法对光栅角编码器进行补偿可以有效减小码盘安装误差对旋转控制的影响。  相似文献   

11.
The (static) energy-momentum tensor, angular momentum tensor and scaling flux vector of micropolar elasticity are derived within the framework of Noether’s theorem on variational principles. Certain balance (or broken conservation) laws of broken translational, rotational and dilatational symmetries are found including inhomogeneities, elastic anisotropy, body forces, body couples and dislocations and disclinations present. The non-conserved J-, L- and M-integrals of micropolar elasticity are derived and discussed. We gave explicit formulae for the configurational forces, moments and work terms.  相似文献   

12.
The nonlinear global exponential pointwise stability of a vertical steady flow driven by a horizontal periodic temperature gradient in a porous layer is performed. It is shown that the stability threshold depends on the supremum of a quadratic functional, having non constant coefficients, and new in the literature on the convection problem. In solving the variational problem, a suitable functional transformation is used.Received: 27 January 2003, Accepted: 10 March 2003, Published online: 12 September 2003 Correspondence toF. Capone  相似文献   

13.
 An experimental observation related to the influence of the bottom topography on the development of gravity driven surface boundary currents in rotating systems is described and discussed. The results presented concern the local flow geometry in the vicinity of the head of the current. It is observed that, depending on the values of the independent experimental variables and the inclination angle of the bottom topography, the current propagates along the boundary with its head being either attached to or detached from the coastline. An appropriate scaling of the experimental data reveals that the attached and detached head mode occur in two distinct parameter regimes which are separated from each other by a well defined border. The discussion of the results suggests that this border identifies the division between two flow regimes in which the local flow structure in the vicinity of the head of the gravity current is and where it is not significantly influenced by the bottom topography. Received: 15 September 1997/Accepted: 23 January 1998  相似文献   

14.
15.
The evolution of a few large scale high frequency standing internal waves confined to a vertical plane is studied numerically. The growth of nonlinear interactions leads to a transfer of energy toward small vertical scales and lower frequencies: the result is a steep energy decrease due to wave breaking. Induced mixing is evaluated. A parametric forcing is also introduced in order to compare with laboratory experiments. Wave breaking also occurs but as opposed to the unforced case different phases are next observed: internal wave growth due to constructive forcing alternate with energy decrease.  相似文献   

16.
 The microporosity formation in a vertical unidirectionally solidifying Al–4.1%Cu alloy casting is modeled in both microgravity and standard gravity as well as in the conditions of decreased (Moon, Mars) and increased (Jupiter) gravity. Due to the unique opportunities offered by a low-gravity environment (absence of metallostatic pressure and of natural convection in the solidifying alloy) future microgravity experiments will significantly contribute to attaining a better physical understanding of the mechanisms of microporosity formation. One of the aims of the present theoretical investigation is to predict what microporosity patterns will look like in microgravity in order to help plan a future microgravity experiment. To perform these simulations, the authors suggest a novel three-phase model of solidification that accounts for the solid, liquid, and gas phases in the mushy zone. This model accounts for heat transfer, fluid flow, macrosegregation, and microporosity formation in the solidifying alloy. Special attention is given to the investigation of the influence of microporosity formation on the inverse segregation. Parametric analyses for different initial hydrogen concentrations and different gravity conditions are carried out. Received on 14 April 2000  相似文献   

17.
18.
The initial-boundary value problem of the vertical ascent of a circular cylinder in a multilayer fluid is considered within the nonlinear theory. In each layer the fluid is ideal, incompressible, heavy, and homogeneous. At the initial instant of time the cylinder is located in the lower layer and begins smoothly to accelerate vertically from zero to a constant velocity. A system of integrodifferential equations of the problem is obtained. As unknowns, this system contains both the intensities of the singularities simulating the fluid and rigid boundaries and the functions describing the shape of the interface between the fluid media. The numerical solution of this system is based on two iteration processes, one of which is associated with time integration using the Runge-Kutta-Felberg scheme, while the other is associated with the solution of a system of linear algebraic equations obtained by discretization of the integral relations in each time step. The problem of the vertical ascent of a cylinder in a three-layer fluid (seawater, fresh water and air) is considered in detail. The results of calculating the perturbations of the fluid interfaces and the distributed and total hydrodynamic contour characteristics are given. The results obtained are compared with the solution of the problem of the ascent of a circular cylinder to the interface between water and air media. It is concluded that the third layer and the Froude number significantly affect the nature of the perturbations induced by the contour. Omsk, e-mail: gorlov@iitam.omsk.net.ru. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 153–159, March–April, 2000. The work was carried out with financial support from the Russian Foundation for Basic Research (project No. 96-01-00093).  相似文献   

19.
数值模拟了环管中内管偏心自转且公转时由轴向压力所驱动的幂律流体充分发展层流,分析了内管上的流体作用力。结果表明,内管偏心自转时流体作用力具有推动内管作和自转同向公转的效果。当只有外力矩驱动内管自转时,由于流体的作用,随内管线密度的不同,内管能达到的受力平衡态也不同:线密度较小时内管仅能在同心自转时达到受力平衡;线密度较大时内管能在作具有不变角速度和偏心率公转时达到受力平衡,且内管线密度越大,对应的受力平衡的公转的偏心率也越大。  相似文献   

20.
We re-examine a simple model describing the propagation of transient forced internal gravity waves in a Boussinesq fluid with constant horizontal mean velocity which was previously studied by Nadon and Campbell (Wave Motion, 2007). The waves are generated by a horizontally-periodic lower boundary condition and propagate upwards. We derive an alternative exact expression for the solution which more readily gives insight into the behaviour of the solution at high altitude. Some special cases of lower boundary conditions are considered to illustrate the features of the solution. This form of the solution allows us to use a Fourier transform to derive the solution for the more general situation where a wave packet is generated by a horizontally-localized lower boundary condition, comprising a continuous spectrum of horizontal wavenumbers or Fourier modes. This is a more realistic representation of internal gravity waves in the atmosphere and can be used as a starting point for investigating waves generated by an obstacle of finite horizontal extent such as an isolated mountain or a mountain range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号