首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Vibrational circular dichroism (VCD) and infrared (IR) absorption spectra in the NH stretching region have been measured for the dipeptides, R′COAANHR′'(R′ = Me and tertBu; AA = Ala, Leu, Val and Phe; R′' = Me, isoBu and neoPe). Analyses of the VCD and absorption spectra indicated that the VCD bands for the NH stretching are quite sensitive to the state of hydrogen bonding as well as the local conformation of oligopeptides. VCD spectra exhibit a negative VCD band at 3420-3405 cm−1 due to the C5 conformer with an intramolecularly hydrogen-bonded five-membered ring. The intermolecularly hydrogen-bonded NH stretching vibration exhibits a characteristic negative—positive couplet from the high wavenumber side due to the antiparallel C5C5 dimer formation. Hydrogen-bonded oligomers beyond the dimer formed in highly concentrated solutions give rise to an additional negative VCD band on the lower wavenumber side of the hydrogen-bonded absorption band.  相似文献   

2.
This paper presents a discussion of the interaction energies for selected conformers of chiral l-cysteine and their (1:1) complexes with water at the B3LYP/aug-cc-pVDZ level. From among more than forty calculated 1:1 complexes three groups of complexes were singled out and examined by the B3LYP/aug-cc-pVDZ calculated vibrational circular dichroism (VCD) spectra. On the basis of analysis of the nu(OmicronEta) and nu(NuEta) and beta(OH2) and beta(NH2) ranges, the VCD spectra were found to be sensitive to conformational changes and water arrangement in cysteine complexes, and to be especially useful for discriminating between different chiral forms of intermolecular hydrogen-bonding complexes. In particular, we show that the VCD modes of an achiral water molecule after complex formation acquire significant rotational strengths whose signs change in line with the geometry of the complex. Moreover, for some water arrangements the VCD spectra can be sensitive to water-wagging conformers and, in temperatures low enough, the intensive nu(OmicronEtaWfree) and beta(H2O) VCD bands may be sufficiently separated to be splitted into pair of oppositely directed bands.  相似文献   

3.
The odd-even effect of chiral alkyl alcohols, (S)-CH(3)CHOHC(n)()H(2)(n)()(+1) (n = 2-8), in solution state has been observed spectroscopically for the first time. The vibrational circular dichroism (VCD) bands at 1148 cm(-)(1) exhibit a clear odd-even effect. The observed VCD bands of (R)-(-)-2-hexanol correspond well to those predicted (population weighted). Density functional theory calculations indicate that the most prevalent conformations in solution are the all-trans forms. The odd-even effect of the VCD bands is ascribed to the alternating terminal methyl motions in the alkyl chains relative to fixed motions near the chiral center in the trans conformations. The conformational sensitivity of VCD for the chiral alcohols in the solution state may be useful for the design of liquid crystals and ligands in the future.  相似文献   

4.
Raman spectroscopy of selected lead minerals of environmental significance   总被引:2,自引:0,他引:2  
The Raman spectra of the minerals cerrusite (PbCO(3)), hydrocerrusite (Pb(2)(OH)(2)CO(3)), phosgenite (Pb(2)CO(3)Cl(2)) and laurionite (Pb(OH)Cl) have been used to qualitatively determine their presence. Laurionite and hydrocerrusite have characteristic hydroxyl stretching bands at 3506 and 3576 cm(-1). Laurionite is also characterised by broad low intensity bands centred at 730 and 595 cm(-1) attributed to hydroxyl deformation vibrations. The minerals cerrusite, hydrocerrusite and phosgenite have characteristic CO (nu(1)) symmetric stretching bands observed at 1061, 1054 and 1053 cm(-1). Phosgenite displays complexity in the CO (nu(3)) antisymmetric stretching region with bands observed at 1384, 1327 and 1304 cm(-1). Cerrusite shows bands at 1477, 1424, 1376 and 1360 cm(-1). The hydrocerrusite Raman spectrum has bands at slightly different positions from cerrusite, with bands at 1479, 1420, 1378 and 1365 cm(-1). The complexity of the nu(3) region is also reflected in the nu(2) and nu(4) regions with the observation of multiple bands. Laurionite is characterised by two intense bands at 328 and 272 cm(-1) attributed to PbO and PbCl stretching bands. Importantly, all four minerals are characterized by their Raman spectra, enabling the mineral identification in leachates and contaminants of environmental significance.  相似文献   

5.
Fárník M  Davis S  Nesbitt DJ 《Faraday discussions》2001,(118):63-78; discussion 109-19
Structural and dynamical information on small hydrogen-bonded systems is revealed by high-resolution IR spectroscopy of HCl dimer, trimer and tetramer. In (HCl)2, four combination bands tentatively assigned to the Van der Waals stretch nu 4 and geared band nu 5 vibrations are observed. The study focuses on two unexpected results: (i) all of the observed bands are built only on the bound HCl stretch nu 2, and (ii) the bands predominantly originate from the 9-fold less populated upper tunneling level of the ground state. Model 3D quantum calculations are presented to show that both these surprising trends originate from the large amplitude tunneling dynamics in the dimer. The (HCl)3 spectra are assigned and analyzed for multiple isotopomeric contributions. The spectral fit reveals large homogeneous line broadening indicating the excited state lifetime of approximately 1.6 ns and tentatively associated with dynamics of intramolecular vibrational energy distribution (IVR) induced trimer ring opening. Finally, first high-resolution data on the HCl stretch fundamental spectrum of (HCl)4 are presented.  相似文献   

6.
The vibrational circular dichroism (VCD) spectrum of S-(-) and R-(+)-2-chloropropionic acid is thoroughly analyzed. Besides the VCD spectrum of the monomer, the dimers (stabilized by strong hydrogen bonds) and the 2-chloropropionic acid-CHCl(3) complexes (stabilized by a weak hydrogen bond) are studied both experimentally (in solution and in low-temperature Ar matrix) and by quantum chemical computations. It is shown that dimer formation drastically changes, and even weak complex formation can also substantially affect the overall shape of the VCD spectrum. The present and previous results can be generalized for the practice of absolute configuration determination of carboxylic acids by VCD spectroscopy. For these measurements, if bulky groups do not block dimer formation, comparison of the computed spectra of the dimers with the experimental spectra recorded in relatively concentrated (~0.1 mol dm(-3)) solutions is suggested. Our study also shows that due to the stabilization of monomers and/or the formation of weak complexes, the VCD spectrum recorded in CHCl(3) is more complex and, like in the present case, can have a lower intensity than that of the spectrum recorded in CCl(4). Therefore, if solubility allows, CCl(4) is a much preferred solvent over CHCl(3).  相似文献   

7.
Ab initio calculations together with vibrational circular dichroism (VCD) have been used for studying the conformations of a quinoline-derived oligoamide bearing a terminal chiral residue. Three helically folded conformers of the dimer, trimer, and tetramer forms of the oligomer were optimized at the density functional theory (DFT) level using the B3LYP functional and the 6-31G* basis set. For each form, the three conformers differ in their helical handedness and in the conformation of the chiral end group. The calculated structures of the tetramer and also the proportions predicted between them based on their calculated Gibbs free energies differences match remarkably well with experimental data collected on an octamer. Specifically, a R-phenethyl terminal group gives rise to a 91:9 ratio between left handed and right handed helices. The predicted VCD spectrum calculated from the Boltzmann population of the individual conformer reproduces very well the experimental VCD spectrum of the tetramer in CDCl3 solution. The DFT calculations performed for the trimer also allow one to assess the preferred handedness of the helix and the conformation of the chiral end group, but the calculated relative populations differ slightly from experimental data. Finally, this study shows that the dimer fragment is not sufficient to obtain valuable information on the conformation of this aromatic oligoamide foldamer.  相似文献   

8.
We have observed infrared spectra of the CF(3)I dimer produced in a supersonic jet by matrix-isolation Fourier transform infrared spectroscopy and infrared cavity ring-down (IR-CRD) spectroscopy. In the matrix-isolation experiments, the dimer was isolated in an Ar matrix by the pulse-deposition method. The recorded spectral range covers the symmetric (nu(1)) and doubly degenerate (nu(4)) C-F stretching regions. From the concentration dependence of the matrix-isolation spectra we have assigned one dimer band for each fundamental region. It was not easy to identify the dimer band for the nu(4) band because of the multiplet feature of the monomeric nu(4) band caused by the site symmetry breaking. The spectra of (CF(3)I)(2) in the nu(4) band region were thus also measured in the gas phase by IR-CRD spectroscopy, where we detected two dimer bands. Comparing the observed band positions with the results of quantum chemical calculations, we have assigned the observed dimer bands to the head-to-head isomer. The structure of (CF(3)I)(2) and its photochemical implications are discussed, in comparison with methyl iodide dimer reported previously [Ito et al., Chem. Phys. Lett. 343, 185 (2001)].  相似文献   

9.
Vibrational absorption and circular dichroism (VCD) spectra of (-)-(1S,3R)-camphanic acid have been measured in deuterated chloroform solutions at different concentrations (0.005, 0.045, and 0.200 M) in the mid-infrared spectral range. Experimental spectra have been compared with the density functional theory (DFT) absorption and VCD spectra, calculated using the B3PW91 functional and cc-pVTZ basis set for three conformers of both the monomer and the dimer forms of (-)-(1S,3R)-camphanic acid. These calculations indicate that, in the dilute solution, the conformer with intramolecular hydrogen-bonding between the hydroxyl and lactone groups is of lowest energy and represents 70% of the different monomer conformers at room temperature, whereas, in concentrated solution, the dimer formed by intermolecular hydrogen-bonding of carboxyl groups of the two distinct monomer conformations is stabilized. The vibrational absorption and circular dichroism spectra calculated from the Boltzmann population of the individual monomer and dimer conformers are in very good overall agreement with the corresponding experimental spectra, allowing the absolute conformation and configuration of (-)-(1S,3R)-camphanic acid in dilute and concentrated solution, respectively. Experiments were also performed on (-)-(1S,3R)-camphanic chloride for which the populations predicted by DFT calculations are found to be in disagreement with those deduced from experimental spectra.  相似文献   

10.
We have measured the infrared (IR) vibrational spectrum for cis-dichloroethene (cis-ClCH[Double Bond]CHCl) in excited Rydberg states with the effective principal quantum numbers n(*)=9, 13, 17, 21, 28, and 55 using the vacuum ultraviolet-IR-photoinduced Rydberg ionization (VUV-IR-PIRI) scheme. Although the IR frequencies observed for the vibrational bands nu(11) (*) (asymmetric C-H stretch) and nu(12) (*) (symmetric C-H stretch) are essentially unchanged for different n(*) states, suggesting that the IR absorption predominantly involves the ion core and that the Rydberg electron behaves as a spectator; the intensity ratio for the nu(11) (*) and nu(12) (*) bands [R(nu(11) (*)nu(12) (*))] is found to decrease smoothly as n(*) is increased. This trend is consistent with the results of a model ab initio quantum calculation of R(nu(11) (*)nu(12) (*)) for excited cis-ClCH[Double Bond]CHCl in n(*)=3-18 states and the MP26-311++G(2df,p) calculations of R(nu(11)nu(12)) and R(nu(11) (+)nu(12) (+)), where R(nu(11)nu(12))[R(nu(11) (+)nu(12) (+))] represents the intensity ratio of the nu(11)(nu(11) (+)) asymmetric C-H stretching to the nu(12)(nu(12) (+)) symmetric C-H stretching vibrational bands for cis-ClCH[Double Bond]CHCl (cis-ClCH[Double Bond]CHCl(+)). We have also measured the IR-VUV-photoion (IR-VUV-PI) and IR-VUV-pulsed field ionization-photoelectron depletion (IR-VUV-PFI-PED) spectra for cis-ClCH[Double Bond]CHCl. These spectra are consistent with ab initio calculations, indicating that the IR absorption cross section for the nu(12) band is negligibly small compared to that for the nu(11) band. While the VUV-IR-PIRI measurements have allowed the determination of nu(11) (+)=3067+/-2 cm(-1), nu(12) (+)=3090+/-2 cm(-1), and R(nu(11) (+)nu(12) (+)) approximately 1.3 for cis-ClCH=CHCl(+), the IR-VUV-PI and IR-VUV-PFI-PED measurements have provided the value nu(11)=3088.5+/-0.2 cm(-1) for cis-ClCH=CHCl.  相似文献   

11.
Infrared photodissociation (IRPD) spectra of carbon dioxide cluster ions, (CO(2))(n) (+) with n=3-8, are measured in the 1000-3800 cm(-1) region. IR bands assignable to solvent CO(2) molecules are observed at positions close to the vibrational frequencies of neutral CO(2) [1290 and 1400 cm(-1) (nu(1) and 2nu(2)), 2350 cm(-1) (nu(3)), and 3610 and 3713 cm(-1) (nu(1)+nu(3) and 2nu(2)+nu(3))]. The ion core in (CO(2))(n) (+) shows several IR bands in the 1200-1350, 2100-2200, and 3250-3500 cm(-1) regions. On the basis of previous IR studies in solid Ne and quantum chemical calculations, these bands are ascribed to the C(2)O(4) (+) ion, which has a semicovalent bond between the CO(2) components. The number of the bands and the bandwidth of the IRPD spectra drastically change with an increase in the cluster size up to n=6, which is ascribed to the symmetry change of (CO(2))(n) (+) by the solvation of CO(2) molecules and a full occupation of the first solvation shell at n=6.  相似文献   

12.
Brown TpiPrMoO(SR)(CO) (TpiPr = hydrotris(3-isopropylpyrazol-1-yl)borate; R = Et, iPr, Ph, p-tol, Bz) are formed when TpiPrMoO(SR)(NCMe) react with CO gas in toluene. The carbonyloxomolybdenum(IV) complexes exhibit nu(CO) and nu(Mo=O) IR bands at ca. 2025 and 935 cm(-1), respectively, and NMR spectra indicative of C(1) symmetry, with delta(C)(CO) ca. 250. The crystal structure of TpiPrMoO(SiPr)(CO), the first for a mononuclear carbonyloxomolybdenum complex, revealed a distorted octahedral geometry, with d(Mo=O) = 1.683(3) A, d(Mo-C) = 2.043(5) A, and angle(O=Mo-C) = 90.87(16) degrees . The blue-green acetonitrile precursors are generated by reacting cis-TpiPrMoO2(SR) with PPh3; they are unstable, display a single nu(Mo=O) IR band at ca. 950 cm(-1), and exhibit NMR spectra consistent with C1 symmetry. Red-brown cis-TpiPrMoO2(SR) (R = as above and tBu) are formed by metathesis of TpiPrMoO2Cl and HSR/NEt3 in dichloromethane. The complexes exhibit strong nu(MoO2) IR bands at ca. 925 and 895 cm(-1), and NMR spectra indicative of Cs symmetry; the isopropyl, p-tolyl, and benzyl derivatives possess distorted octahedral geometries, with d(Mo=O)(av) = 1.698 A and angle(MoO(2))(av) = 103.5 degrees.  相似文献   

13.
The high-resolution infrared emission spectrum of BeF2 vapor at 1000 degrees C was rotationally analyzed with the assistance of large-scale ab initio calculations using the coupled-cluster method including single and double excitations and perturbative inclusion of triple excitations, in conjunction with correlation-consistent basis sets up to quintuple-zeta quality. The nu3 fundamental band, the nu1+nu2, nu1+nu3, and 2nu2+nu3 combination bands, and 18 hot bands were assigned. The symmetric stretching (nu1), bending (nu2), and antisymmetric stretching (nu3) mode frequencies were determined to be 769.0943(2), 342.6145(3), and 1555.0480(1) cm-1, respectively, from the band origins of the nu3, nu1+nu3, and nu1+nu2 bands. The observed vibrational term values and B rotational constants were fitted simultaneously to an effective Hamiltonian model with Fermi resonance taken into account, and deperturbed equilibrium vibrational and rotational constants were obtained for BeF2. The equilibrium rotational constant (Be) was determined to be 0.235 354(41) cm-1, and the associated equilibrium bond distance (re) is 1.3730(1) A. The results of our ab initio calculations are in remarkably good agreement with those of our experiment, and the calculated value was 1.374 A for the equilibrium bond distance (re). As in the isoelectronic CO2 molecule, the Fermi resonance in BeF2 is very strong, and the interaction constant k122 was found to be 90.20(4) cm-1.  相似文献   

14.
FTIR and laser Raman spectra of beta-alanine beta-alaninium picrate and dl-phenylalanine dl-phenylalaninium picrate crystals of space group P1 (C(i)) have been me in the 4000-50 cm(-1) range, at room temperature. The former crystal consists of beta-alanine beta-alaninium and the later dl-phenylalanine dl-phenylalaninium as cations. The presence of both carbonyl (CO) and carboxylate COO(-) groups in these crystals is the evidence for the existence of the zwitterion and the protonated forms. Factor group analysis has been made and the numbers of vibrational modes have been calculated. The tentative assignments of the observed bands are given. Fermi resonance has also been observed in one of the crystal beta-alanine beta-alaninium picrate. The picrate group forms the anion in both crystals and the characteristic bands nu(as)NO(2), nu(s)NO(2), and nu(phen)C-O stretching are observed in the spectra. These suggest that the picrate ion is unaffected by the presence of the cations.  相似文献   

15.
A [(bpy)Re(CO)3L+] complex (bpy = 2,2'-bipyridine) in which L contains a phenyl-azacrown ether that is attached to Re via an amidopyridyl linking group has been studied by steady state and nanosecond time-resolved resonance Raman spectroscopy. Vibrational band assignments have been aided by studies of model complexes in which a similar electron-donating dimethylamino group replaces the azacrown or in which an electron-donor group is absent, and by density functional theory calculations. The ground state resonance Raman spectra show nu(bpy) and nu(CO) bands of the (bpy)Re(CO)3 group when excitation is exclusively in resonance with the Re --> bpy metal-to-ligand charge-transfer (MLCT) transition, whereas L ligand bands are dominant when it is in resonance with the strong intra-ligand charge-transfer (ILCT) transition present for L ligands with electron-donor groups. Transient resonance Raman (RR) spectra obtained on single color (385 nm) pulsed excitation of the complexes in which an electron-donor group is absent show bpy*- bands of the MLCT excited state, whereas those of the complexes with electron-donor groups show both bpy*- bands and a down-shifted nu(CO) band that together are characteristic of an L-to-bpy ligand-to-ligand charge-transfer (LLCT) excited state. Samples in which a metal cation (Li+, Na+, Ca2+, Ba2+) is bound to the azacrown in the ground state show bands from both excited states, consistent with a mechanism in which the LLCT state forms after metal cation release from the MLCT state. Nanosecond time-resolved RR spectra from two-color (355 nm pump, 500 nm probe) experiments on the electron-donor systems show L-ligand bands characteristic of the LLCT state; the same bands are observed from samples in which a metal cation is bound to the azacrown in the ground state, and their time dependence is consistent with the proposed mechanism in which the rate constant for ion release in the MLCT state depends on the identity of the metal cation.  相似文献   

16.
The chemistry of a magnesium based hydrotalcite known as iowaite Mg6Fe2Cl2(OH)16.4H2O has been studied using Raman spectroscopy. Iowaite has chloride as the counter anion in the interlayer. The formula of synthetic iowaite was found to be Mg5.78Fe2.09(Cl,(CO3)0.5)(OH)16.4H2O. Oxidation of natural iowaite results in the formation of Mg4FeO(Cl,CO3) (OH)8.4H2O. X-ray diffraction (XRD) shows that the iowaite is a layered structure with a d(001) spacing of 8.0 angtsroms. For synthetic iowaite three Raman bands at 1376, 1194 and 1084 cm(-1) are attributed to CO3 stretching vibrations. These bands are not observed for the natural iowaite but are observed when the natural iowaite is exposed to air. The Raman spectrum of natural iowaite shows three bands at 708, 690 and 620 cm(-1) and upon exposure to air, two broad bands are found at 710 and 648 cm(-1). The Raman spectrum of synthetic iowaite has a very broad band at 712 cm(-1). The Raman spectrum of natural iowaite shows an intense band at 527 cm(-1). The air oxidized iowaite shows two bands at 547 and 484 cm(-1) attributed to the (CO3)(2-)nu2 bending mode. Raman spectroscopy has proven most useful for the study of the chemistry of iowaite and chemical changes induced in natural iowaite upon exposure to air.  相似文献   

17.
The infrared emission spectra of CO adsorbed on alumina-supported 1, 3, and 5 wt % Rh, Ir, and Pt metal-containing catalysts were studied at 423 and 473 K. While CO is adsorbed in dicarbonyl (dimer), linearly (on-top) bonded and bridged carbonyl forms on rhodium and platinum, the dimer form is dominant on iridium. The relative intensity of Rh-CO and Ir-CO linear bands decrease with increasing temperature compared to the intensity of the dicarbonyl bands; the corresponding bands on Pt behave the opposite way. Two dicarbonyl and two linear Pt-CO bands were identified in the infrared spectra of Pt/Al(2)O(3) catalysts. The surface structure (kinked or planar Pt atoms), the dispersity of the metal, the temperature, and the quantity of adsorbed CO on the surfaces all have an effect on the fine structure of the Pt-CO stretching bands. The metal-carbon and CO stretching force constants were calculated for surface dicarbonyl, linearly bonded CO, and bridged carbonyl species. The metal-carbon stretching wavenumbers and force constants were predicted and compared between surface species and metal carbonyl complexes. The iridium-carbon bonds were found always stronger than the Rh-C and Pt-C ones in all surface species. The observed stretching wavenumbers and force constants seem to support the idea that CO and metal-carbon bonds are always stronger in metal carbonyl complexes than in adsorbed surface species. The distribution and mode of CO adsorption on surface metal sites can be effectively studied by means of infrared emission spectroscopy.  相似文献   

18.
CO complexes formed in reduced nitric oxide reductase from Bacillus azotoformans were investigated with resonance Raman and FTIR techniques. These experiments shows the presence of two nu(C-O) bands, one at approximately 1970 cm-1 assigned to the heme-CO complex, and one at approximately 2070 cm-1 from the non-heme iron, FeBCO. At cryogenic temperatures, the heme-CO complex adopts a semi-bridging configuration with FeB which decreases its stretching frequency to approximately 1910 cm-1 and decreases the nu(C-O) of FeBCO by approximately 20 cm-1. The concomitant binding of two CO molecules, one per iron(II) at the active site, is consistent with the formation of a [{FeNO}7]2 iron-nitrosyl dimer during substrate turnover. This study strongly supports the notion that this family of enzymes utilizes a reaction mechanism based on catalysis by proximity, where the formation of two iron-nitrosyl groups promotes N-N bond formation.  相似文献   

19.
Raman spectroscopy at 298 and 77K has been used to study the mineral kamotoite-(Y), a uranyl rare earth carbonate mineral of formula Y(2)(UO(2))(4)(CO(3))(3)(OH)(8).10-11H(2)O. The mineral is characterised by two Raman bands at 1130.9 and 1124.6 cm(-1) assigned to the nu(1) symmetric stretching mode of the (CO(3))(2-) units, while those at 1170.4 and 862.3 cm(-1) (77K) to the deltaU-OH bending vibrations. The assignment of the two bands at 814.7 and 809.6 cm(-1) is difficult because of the potential overlap between the symmetric stretching modes of the (UO(2))(2+) units and the nu(2) bending modes of the (CO(3))(2-) units. Only a single band is observed in the 77K spectrum at 811.6 cm(-1). One possible assignment is that the band at 814.7 cm(-1) is attributable to the nu(1) symmetric stretching mode of the (UO(2))(2+) units and the second band at 809.6 cm(-1) is due to the nu(2) bending modes of the (CO(3))(2-) units. Bands observed at 584 and 547.3 cm(-1) are attributed to water librational modes. An intense band at 417.7 cm(-1) resolved into two components at 422.0 and 416.6 cm(-1) in the 77K spectrum is assigned to an Y(2)O(2) stretching vibration. Bands at 336.3, 286.4 and 231.6 cm(-1) are assigned to the nu(2) (UO(2))(2+) bending modes. U-O bond lengths in uranyl are calculated from the wavenumbers of the uranyl symmetric stretching vibrations. The presence of symmetrically distinct uranyl and carbonate units in the crystal structure of kamotoite-(Y) is assumed. Hydrogen-bonding network related to the presence of water molecules and hydroxyls is shortly discussed.  相似文献   

20.
《Chemical physics letters》1987,135(6):525-528
The pressure shifts of the first three bands appearing in the visible spectra of [Pt3(CO)6]2−n (n = 3–5) have been measured in solution over the range 0–10 kbar. Previous electronic calculations performed on the dimer in conjunction with these results afford a possible set of assignments for the first three bands appearing in the visible spectrum for the dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号