首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theophylline-7-acetic acid (acefylline) ( 3 ) and its derivatives are pharmacologically active compounds and generally recognized as bronchodilators for the treatment of respiratory diseases like acute asthma for over 70 years. In this article, synthesis of 2-((5-((1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)methyl)-1,3,4-oxadiazol-2-yl)thio)-N-arylacetamides ( 10a-j ) has been reported. All the synthesized derivatives ( 10a-j) were structurally verified by FT-IR, 1H NMR, 13C NMR and evaluated for their anti-cancer (using MTT assay), hemolytic and thrombolytic potential. N-(4-Chlorophenyl)-2-(5-((1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)methyl)-1,3,4-oxadiazol-2-ylthio)acetamide ( 10g ) was found to be the most active against human liver cancer cell lines (Huh7) having cell viability 53.58 ± 1.28 using 100 μg/mL concentration of compound which was further in-silico modelled to describe the possible mechanistic insights for its anti-proliferative activity. The results of hemolytic and thrombolytic activities indicated that these derivatives were less toxic and hold considerable potential as a drug candidate. 2-(5-((1,3-Dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)methyl)-1,3,4-oxadiazol-2-ylthio)-N-(2-fluorophenyl)acetamide ( 10c ) of the series was found to be least toxic with 0.1% hemolysis relative to ABTS (95.5%) as positive control. 2-(5-((1,3-Dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)methyl)-1,3,4-oxadiazol-2-ylthio)-N-(tetrahydro-2H-pyran-4-yl)acetamide ( 10j ) exhibited potent clot lysis activity (90%) as compared to negative control DMSO (0.57%).  相似文献   

2.
Enantiomers of representative alkyl esters of phosphorothioic ( 7 ), phosphorodithioic ( 6 ), phosphorotrithioic ( 11 ), phosphoroselenothioic ( 9 ), methanephosphonothioic ( 28 ), methanephosphonodithioic ( 25 ), and methylphenylphosphinothioic ( 31 ) acids were prepared from corresponding pure diastereoisomers of N-[R(+)- or S(-)-α-methylbenzyl] phosphamidochalcogenates (e.g. 2 , 3 , 12 , 17 , 23 , 26 , and 30 ) via PN → PX conversion, which has been proved to proceed with full retention of configuration at phosphorus.  相似文献   

3.
New intermetallic rare earth compounds LaRhMg, CeRhMg, PrRhMg, and NdRhMg were prepared by reaction of the elements in sealed tantalum tubes in a high‐frequency furnace. The compounds were investigated by X‐ray diffraction both on powders and single crystals. LaRhMg crystallizes with the LaNiAl type structure, space group Pnma, Z = 8, a = 760.1(2), b = 419.92(8), c = 1702.6(2) pm, wR2 = 0.0482, 740 F2 values and 38 variable parameters. The cerium compound adopts the ZrNiAl structure: P6¯2m, Z = 3, a = 752.3(1), c = 417.6(1) pm, wR2 = 0.0497, 250 F22 values and 17 variable parameters. PrRhMg and NdRhMg crystallize with the TiNiSi type: Pnma, Z = 4, a = 721.62(7), b = 415.98(4), c = 869.47(8) pm, wR2 = 0.1864, 440 F2 values, 20 variables for PrRhMg and a = 720.6(1), b = 417.6(1), c = 868.8(1) pm, wR2 = 0.0779, 425 F2 values, 22 variables for NdRhMg. Refinements of the occupancy parameters revealed mixed Mg/Rh occupancy for the magnesium sites of the cerium and the neodymium compound leading to the compositions CeRh1.262(8)Mg0.738(8) and NdRh1.114(9)Mg0.886(9) for the investigated single crystals. From a geometrical point of view, the four crystal structures are built up from different rhodium centered trigonal prisms. The rhodium and magnesium atoms form three‐dimensional [RhMg] networks in which the rare earth metal atoms are located in different types of channels. The networks show Rh—Mg and Mg—Mg bonding.  相似文献   

4.
The Diels-Alder adduct of furan and 1-cyanovinyl (1′R)-camphanate was converted into methyl [(tert-butyl)-dimethylsilyl 5-deoxy-2, 3-O-isopropylidene-β-L -ribo-hexofuranosid] uronate ((+)- 4 ). Reduction with diisobutyl-aluminium hydride gave the corresponding aldehyde which was condensed with the ylide derived from triphenyl-(propyl)phosphonium bromide to give (1R, 2S, 3S, 4S)-1-[(tert-butyl)dimethylsilyloxy]tetrahedro-2, 3-(isopropyl-idenedioxy)-4-[(Z)-pent-2′ -enyl]furan ((+)- 7 ). Removal of the silyl protective group gave a mixture of the corresponding furanose that underwent Wittig reaction with the ylide derived from [8-(methoxycarbonyl)-octyl]triphenylphosphonium bromide to yield methyl (11R, 12S, 13S, 9Z, 15Z)-13-hydroxy-11, 12-(isopropylidene-dioxy)octadeca-9, 15-dienoate ((?)- 9 ). Acidic hydrolysis, then saponification afforded (11R, 12S, 13S, 9Z, 15Z)-11, 12, 13-trihydroxyoctadeca-9, 15-dienoic acid ( 1 ).  相似文献   

5.
Partial Synthesis of Grandidones A, 7-Epi-A, B, 7-Epi-B, C, D and 7-Epi-D, from 14-Hydroxytaxodione Oxydative addition of coleon U ( 6 ) to 14-hydroxytaxodione ( 5 ) in the presence of Fétizon's reagent mainly leads to grandidone A ( 1a ) and 7-epigrandidone A ( 1b ) (ca. 15:1), whereas coleon V ( 7 ) and 5 under the same conditions yield grandidone B ( 2a ) and 7-epigrandidone B ( 2b ) (ca. 3:1). Dimerization of 14-hydroxytaxodione ( 5 ) gives grandidone C ( 3 ; ca. 40%), grandidone D ( 4a ; ca. 50%) and 7-epigrandidone D ( 4b ; ca. 10%). All these compounds obtained by partial synthesis are in every respect identical with the natural products, thus establishing their absolute configurations. The thermal transformation of grandidone C ( 3 ) to grandidone D ( 4a )/7-epigrandidone D ( 4b ) and interconversions of 4a and 4b were achieved. Oxydative addition of coleon U ( 6 ) to 14-hydroxytaxodione ( 5 ) in the presence of Fétizon's reagent mainly leads to grandidone A ( 1a ) and 7-epigrandidone A ( 1b ) (ca. 15:1), whereas coleon V ( 7 ) and 5 under the same conditions yield grandidone B ( 2a ) and 7-epigrandidone B ( 2b ) (ca. 3:1). Dimerization of 14-hydroxytaxodione ( 5 ) gives grandidone C ( 3 ; ca. 40%), grandidone D ( 4a ; ca. 50%) and 7-epigrandidone D ( 4b ; ca. 10%). All these compounds obtained by partial synthesis are in every respect identical with the natural products, thus establishing their absolute configurations. The thermal transformation of grandidone C ( 3 ) to grandidone D ( 4a )/7-epigrandidone D ( 4b ) and interconversions of 4a and 4b were achieved. Oxydative addition of coleon U ( 6 ) to 14-hydroxytaxodione ( 5 ) in the presence of Fétizon's reagent mainly leads to grandidone A ( 1a ) and 7-epigrandidone A ( 1b ) (ca. 15:1), whereas coleon V ( 7 ) and 5 under the same conditions yield grandidone B ( 2a ) and 7-epigrandidone B ( 2b ) (ca. 3:1). Dimerization of 14-hydroxytaxodione ( 5 ) gives grandidone C ( 3 ; ca. 40%), grandidone D ( 4a ; ca. 50%) and 7-epigrandidone D ( 4b ; ca. 10%). All these compounds obtained by partial synthesis are in every respect identical with the natural products, thus establishing their absolute configurations. The thermal transformation of grandidone C ( 3 ) to grandidone D ( 4a )/7-epigrandidone D ( 4b ) and interconversions of 4a and 4b were achieved. Oxydative addition of coleon U ( 6 ) to 14-hydroxytaxodione ( 5 ) in the presence of Fétizon's reagent mainly leads to grandidone A ( 1a ) and 7-epigrandidone A ( 1b ) (ca. 15:1), whereas coleon V ( 7 ) and 5 under the same conditions yield grandidone B ( 2a ) and 7-epigrandidone B ( 2b ) (ca. 3:1). Dimerization of 14-hydroxytaxodione ( 5 ) gives grandidone C ( 3 ; ca. 40%), grandidone D ( 4a ; ca. 50%) and 7-epigrandidone D ( 4b ; ca. 10%). All these compounds obtained by partial synthesis are in every respect identical with the natural products, thus establishing their absolute configurations. The thermal transformation of grandidone C ( 3 ) to grandidone D ( 4a )/7-epigrandidone D ( 4b ) and interconversions of 4a and 4b were achieved.  相似文献   

6.
Indole and N-methylindole react with oxa stabilized carbocations generated in situ from orthoformates to yield tris(3-indolyl)methane. The unsymmetrical isomers, e.g. 2-(N-methyl-3-indolyl)di(N-methyl-3-indolyl)-methane ( 4 ), were not formed as established by an independent synthesis. N,N-Dimethylacetamide dimethyl-acetal reacted with 2-alkyl substituted indoles to produce 1,1-bis(3-indolyl)ethanes ( 3 ).  相似文献   

7.
Reactions of binuclear [Cp*Ir(μ-Cl)Cl]2 (Cp* = pentamethylcyclopentadienyl), [Cp*Rh(μ-Cl)Cl]2 and [(p-cymene)Ru(μ-Cl)Cl]2 with 2 equiv. AgOTf (OTf = O3SCF3) followed by addition of one equiv. (m-pyridyl)N=C(C10H6)C=N(m-pyridyl) (mPy-bian) linker and NiCl2·DME (DME = 1,2-dimethoxyethane) in methanol gave heterometallic cationic metallacycles [Cp*4Ir4(μ-Cl)4(μ-mPy-bian)2NiCl2](OTf)4 (1a), [Cp*4Rh4(μ-Cl)4(μ-mPy-bian)2NiCl2](OTf)4 (1b), and [(p-cymene)4Ru4(μ-Cl)4(μ-mPybian)2NiCl2](OTf)4 (1c), respectively. All the complexes are characterized by IR, NMR spectroscopy, and elemental analysis. Ni K-edge X-ray absorption spectroscopy (XAS) studies on 1a1c reveal that nickel is six-coordinate with four nitrogens and two chlorides. Upon activation with MAO, 1a1c showed moderate to good catalytic activity for ethylene and norbornene polymerization.  相似文献   

8.
A uranium coordination compound with pyridine-2,6-dicarboxylic acid in deionized water has been synthesized and characterized by IR, UV, XPS, and X-ray single-crystal diffraction. The crystal belongs to the monoclinic system, space group C2/c with a?=?1.8427(4)?nm, b?=?0.6886(16)?nm, c?=?1.5442(4)?nm, α?=?90°, β?=?94.082(2)°, γ?=?90°, Z?=?4, and V?=?1.9544(8)?nm3. The structure shows an eight-coordinate uranium forming a hexagonal bi-pyramidal 3-D geometry with pyridine-2,6-dicarboxylate as building units. Fluorescent studies show several strong emissions. Cyclic voltammetric measurement of the compound reveals that uranium(VI) is reduced irreversibly at E 1/2?=?927?mV with ΔE p?=?77?mV, E 1/2?=??289?mV with ΔE p?=?113?mV. The electron transfer number (n) involved in reduction processes could be calculated to be approximately two and one, which corresponded to the unusual U(VI)/U(IV) and U(IV)/U(III) couples.  相似文献   

9.
Hydrosilylation of cyclohexene and isopropylidenecyclohexane with chloro(methyl)silanes Me3–n SiHCln (n = 1–3) gives rise to cyclohexyl- and chloro(2-cyclohexylpropyl)methylsilanes. Hydrosilylation of 1-methylcyclohexene with chlorodimethylsilane (n = 1) occurs anomalously and involves double-bond migration to form a mixture of seven compounds: the cis and trans isomers of 2-, 3-, 4-chlorodimethyl(methylcyclohexyl)silanes and chlorodimethyl(cyclohexylmethyl)silane. Chlorodimethylsilane (n = 2) adds to 1-methylcyclohexene to form a mixture of the cis and trans isomers of dichloro(methyl)(2-methylcyclohexyl)silane and dichloro(cyclohexylmethyl)methylsilane. With trichlorosilane (n = 3), no other products than trichloro(cyclohexylmethyl)silane are formed. The hydrosilylation products were reacted with ethynylmagnesium bromide to synthesize the corresponding ethynyl derivatives.Translated from Zhurnal Obshchei Khimii, Vol. 74, No. 12, 2004, pp. 2007–2011.Original Russian Text Copyright © 2004 by O. Yarosh, Zhilitskaya, N. Yarosh, Albanov, Voronkov.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

10.
The structures of [FeIII(tacud)Cl3] ( 1 ) and [FeIII(tacn)Cl3] ( 2 ) (tacud = 1, 4, 8‐triazacycloundecane, tacn = 1, 4, 7‐triazacyclononane) are reported. Both compounds crystallize in the orthorhombic space group Pnma with a = 12.5570(9), b = 12.0028(9), c = 8.2577(6) Å, V = 1244.59(16) Å3, and Z = 4 for 1 and a = 12.095(4), b = 11.125(4), c = 7.963(3) Å, V = 1071.5(6) Å3, and Z = 4 for 2 . The structures of 1 and 2 feature iron(III) in distorted octahedral arrangement with three facially coordinated nitrogen ligands and three chlorides. Bidirectional intermolecular hydrogen bonding between N–H groups and coordinated chlorides is seen for 1 and 2 . Compound 1 is the first example of iron(III) bonded to tacud and compound 2 is only the second structure reported of a 1:1 complex between iron and tacn. The Fe3+/2+ redox couple for 1 is observed at E1/2 = 0.25 V (ΔEp = 99 mV), and for 2 at E1/2 = 0.09 V (ΔEp = 108 mV) versus NHE in DMF at 298 K. Comparison of structural, magnetic, and electrochemical properties for 1 and 2 reveal subtle differences consistent with the stronger coordinating properties of tacn relative to tacud.  相似文献   

11.
1,3-Bis(trimethylsilyl)- and 1,3-bis(tributylstannyl)-5,5-diethylpyrimidine-2,4,6(1H,3H,5H)-triones were synthesized in high yields by the reactions of 5,5-diethyl-2,4,6(1H,3H,5H)-trione (barbital) with hexamethyldisilazane and bis(tributylstannyl) oxide, respectively. The products were reacted with acetyl, benzoyl, and 3-(triethylgermyl)propionyl halides to obtain the corresponding bisacylated pyrimidine derivatives. The reaction of 1-methyluracil with (Bu3Sn)2O gave 1-methyl-3-(tributylstannyl)pyrimidine-2,4(1H,3H)-dione.__________Translated from Zhurnal Obshchei Khimii, Vol. 75, No. 6, 2005, pp. 923–926.Original Russian Text Copyright © 2005 by Gordetsov, Loginova, Zimina, Cherepenikova, Kurskii.  相似文献   

12.
The direct three-component asymmetric Mannich reactions of hydroxyacetone with anilines and aromatic aldehydes in the presence of (2S,5S)-5-(methoxycarbonyl)pyrrolidine-2-carboxylic acid afforded syn-1,2-amino alcohols in good-to-excellent yields (55~91%) and up to 98% ee.  相似文献   

13.
(1S, 4R, 5S, 6S)-5-exo, 6-exo-(Isopropylidenedioxy)-7-oxabicyclo[2.2.1]heptan-2-one ((?)- 1 ) was transformed with high stereoselectivity to L -allose. Similarly, enantiomer (+)- 1 was transformed into L -talose. The ketones (+)- 1 and (?)- 1 were derived from furan and 1-cyanovinyl (1S)-camphanate and 1-cyanovinyl (1R)-camphanate, respectively.  相似文献   

14.
Ab initio molecular orbital methods at the CBS-QB3 level of theory have been used to study the structure and gas-phase stability of various tautomers and rotamers of N-hydroxyurea, N-hydroxythiourea, and N-hydroxysilaurea, their anions and protonated forms. The geometries of N-hydroxyurea, N-hydroxythiourea, and N-hydroxysilaurea, their anions and cations were optimized at the Becke3LYP/CBSB7 level of theory. For all compounds studied, the amidic form is computed to be substantially more stable than the iminolic tautomer. N-Hydroxyurea and its thio and sila derivatives are computed to behave as Nacids in the gas phase. These compounds are in gas-phase weak acids with a calculated acidity of about 1425 to 1355 kJ-mol–1. Basicities increase in the order: N-hydroxyurea < N-hydroxythiourea < N-hydroxysilaurea. The most stable protonated structures are represented by several isomers with almost equal stability. Thus, in the N-hydroxyurea, N-hydroxythiourea, and N-hydroxysilaurea, both protonation at the double bonded (C=O, C=S and Si=O) oxygen and sulfur atoms, as well as the protonation at the N(H)OH nitrogen basic center is equally probable. The experimental pK a value (10.6) of N-hydroxyurea and the computed value (9.7) for its monohydrated complex with the specifically hydrogen-bonded water molecule to the ionizable OH group are in a good agreement. The experimental partition coefficient of N-hydroxyurea is best reproduced by the Alog Ps method. The formation of nitroxide radical in the reaction of N-hydroxyurea and its sulfur and silicon substituted derivatives with the phenol radical is an exothermic process. Thus, the \bondN(H)OH moiety of these compounds may quench the structurally related tyrosyl radicals in the active site of ribonucleotide reductase.  相似文献   

15.
The synthesis of pyridine N-oxide substituted chromones, chromanones, coumarins, quinolines, dihydroquinolines and cinnolines from l-(2-hydroxyphenyl)-2-(2-pyridinyl)ethanone N-oxide, 1-(2-aminophenyl)-2-(2-pyridinyl)ethanone N-oxide and 1-[2-(methylamino)phenyl]-2-(2-pyri-dinyl)ethanone N-oxide is described.  相似文献   

16.
Well‐shaped yellow to red transparent single crystals of the phosphide oxides REZnPO (RE = Y, La–Nd, Sm, Gd, Dy, Ho) were synthesized from the elements and ZnO in NaCl/KCl fluxes in sealed silica ampoules. Four structures (NdZnPO type, R3m) were refined from single crystal X‐ray diffractometer data: a = 388.5(2), c = 3032(1) pm, wR2 = 0.0380, 360 F2 values for YZnPO, a = 394.6(2), c = 3071(1) pm, wR2 = 0.0587, 226 F2 values for SmZnPO, a = 392.2(2), c = 3056(1) pm, wR2 = 0.0262, 462 F2 values for GdZnPO, and a = 389.33(6), c = 3030.5(4) pm, wR2 = 0.0453, 217 F2 values for DyZnPO each with 14 variables per refinement. The structures are composed of alternate stacks of (RE3+O2−) and (Zn2+P3−) layers with covalent RE–O and ZñP bonding within and weak ionic bonding between the layers. The zinc and oxygen atoms have slightly distorted tetrahedral coordination by atoms of phosphorus and the rare earth element, respectively. According to the electron precise formulation RE3+Zn2+P3−O2−, these pnictide oxides are transparent in visible light. Susceptibility measurements on β‐CeZnPO, β‐PrZnPO, and GdZnPO reveal Curie‐Weiss paramagnetism with experimental magnetic moments of 2.31, 3.60, and 7.72 μB/RE atoms, respectively. β‐CeZnPO and β‐PrZnPO show antiferromagnetic order with Néel temperatures of 7.4 (Ce) and 2.2 (Pr) K. GdZnPO shows no magnetic ordering down to 2 K. Single crystal absorption spectra measured for REZnPO (RE = Y, La, Pr, Nd, Sm, Dy) in the NIR‐Vis region reveal unexpected variations for the optical band gap of these phosphide oxides. For RE = Pr, Nd, Sm, Dy, Ho f‐f electronic transitions with nicely resolved ligand‐field splittings are observed in the range 6000–20000 cm−1. DFT band structure calculations show similarity between the valence bands of tetragonal and rhombohedral REZnPO as they possess mainly P‐3p character. In both cases, the conduction bands have mainly Zn‐4s character, but a significant contribution of RE‐5d occurs in rhombohedral REZnPO, which is responsible for a smaller optical band gap for the latter compounds. Variations of the energy gaps of tetragonal REZnPO can be explained by hybridization of Zn‐4s + RE‐5d + RE‐4f orbitals for the conduction band. DFT volume optimizations of α‐ and β‐PrZnPO show β‐PrZnPO to be more stable by 10.7 kJ mol−1.  相似文献   

17.
A simple and efficient method has been developed for the synthesis of 4‐(substituted phenyl)‐3,4‐dihydro‐1H‐indeno [1,2‐d] pyrimidine‐2,5‐dione (5) and 4‐(substituted phenyl)‐2‐thioxo‐1,2,3,4‐tetrahydroindeno [1,2‐d] pyrimidine‐5‐one (6) , by a one‐pot three component cyclocondensation reaction of 1,3 dicarbonyl compound (Indandione) (1) , aromatic aldehyde (2) , and urea/thiourea (3/4) using catalytic amount of conc. HCl in refluxing ethanol. Representative samples were screened for their antimicrobial activity against gram‐negative bacteria, E coli and Paeruginosa and gram‐positive bacteria, S aureus, and C diphtheriae using disc diffusion method. The structures of the products were confirmed by IR, 1H, 13C NMR, and elemental analysis.  相似文献   

18.
Four related quaternary compounds containing rare‐earth metals have been synthesized employing the molten flux method and metathesis. The reactions of Eu and Rb2S5 with Si and Ge in evacuated fused silica ampoules at 725 °C for 150 h yielded RbEuSiS4 ( I ) and RbEuGeS4 ( II ), respectively. On the other hand, a reaction between CeCl3 and K4Ge4Se10 at 650 °C for 148 h has yielded KCeGeSe4 ( III ) and KPrSiSe4( IV ) was obtained by the reaction of elemental Pr, Si and Se in KCl flux at 850 °C for 168 h. Crystal data for these compounds are as follows: I , orthorhombic, space group P212121 (#19), a = 6.392(1), b = 6.634(2), c = 17.001(3) Å, α = β = γ = 90°, Z = 4; II , monoclinic, space group P21/m (#11), a = 6.498(2), b = 6.689(3), c = 8.964(3) Å, β = 108.647(6)°, Z = 2; III , monoclinic, space group P21 (#4), a = 6.852(2), b = 7.025(2), c = 9.017(3) Å, β = 108.116(2)°, Z = 2; IV , monoclinic, space group P21 (#4), a = 6.736(2), b = 6.943(2), c = 8.990(1) Å, β = 108.262(2)°, Z = 2. The crystal structures of I ‐ IV contain two‐dimensional corrugated anionic layers of the general formula, [LnEQ4]? (Ln = Ce, Pr, Eu; E = Si, Ge and Q = S, Se) alternately piled upon layers of alkali cations. In addition to structural elucidation, Raman and UV‐visible spectroscopy, and magnetic measurements for compound III (KCeGeSe4) are also discussed.  相似文献   

19.
Nine new disulfides of N,O-(N,N- or O,O-)-di- and N,N,O-tri-(o-, m- and p-)bromobenzyl-2-thiouracils have been prepared. The structures of these compounds were confirmed by spectroscopic (FT-IR, UV-Vis, 1H NMR) and elemental analyses. Estimation of pharmacotherapeutic potential has been made for synthesized compounds on the basis of Prediction of Activity Spectra for Substances (PASS).  相似文献   

20.
Lanthanide picrate complexes with the ligand N,N,N′,N′-tetraphenyl-3,6-dioxaactanediamide (tdd): [Ln(Pic)3(tdd)] (Ln = La, Nd, Eu, Tb, Er) have been prepared in a nonaqueous medium and characterized by elemental analysis, conductivity measurements, IR, and 1H-NMR spectra. The crystal structures of the complexes for Ln = Nd and Er were determined. The early lanthanide, NdIII, crystallizes as the nona-coordinate complex [Nd(Pic)3(tdd)]. 2 CH3CN in the monoclinic space group P21n with a = 11.384(2), b = 18.805(4), c = 27.526(5) Å, β = 99.41(1)°, V = 5832(2) Å3, and Dc = 1.58 gcm?3 for Z = 4. The structure was refined to R = 0.0505, based on 4772 observed Deflections. The late lanthanide, ErIII, forms an octa-coordinate complex [Er(Pic)3(tdd)]; crystals are triclinic, P1, with a = 12.449(2), b = 17.065(2), c = 26.243(4) Å, α = 72.12(1), β = 87.86(1), γ = 84.60(1)°, V = 5282(1) Å3, and Dc = 1.68 g cm?3 for Z, = 4. The structure was refined to R = 0.0469, based on 10666 observed reflections, The results reveal that tdd forms a ring-like structure with its four O-atoms, coordinating to the metal ions as multidentate ligand, together with one O-atom of the bidentate picrate. The structure of the complexes is greatly affected by the ionic radius due to participation of the picrates in coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号