首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using specifically labelled compounds we have made a detailed study of the source of the hydrogen transferred in the elimination of C3H6 from the molecular ion of phenyln-propyl ether following electron impact ionization and from the protonated (and ethylated) molecule following chemical ionization. The migrating hydrogen originates from all three positions of the npropyl group but not in the ratio expected for randomization of the alkyl hydrogens prior to transfer. The source of the migrating hydrogen is similar for both electron impact ionization and chemical ionization, indicating that the factors governing the rearrangement are the same for both modes of ionization. From a comparison of the results for labelled 2,6-dimethyl phenyl n-propyl ethers with the results for the unsubstituted ether it is concluded that hydrogen transfer occurs only to the ether oxygen and not to the phenyl ring. A two-step mechanism involving a set of competing reversible hydrogen transfer reactions followed by C? O bond cleavage is proposed to explain the results.  相似文献   

2.
The sources of the migrant hydrogen atom(s) in reactions (a) and (b) in the electron impact mass spectrum of n-propyl benzoate have been investigated: (a) [C6H5CO2C3H7]+ →[C6H5CO2H]+ + C3H6; (b) [C6H5CO2C3H7]+ → [C6H5CO2H2]+ + C3H5sdot;. Deuterium labelling of the propyl group showed that, for reaction (a) at 70 eV ionizing energy 3 ± 1% of the hydrogen originates from C-1 of the propyl group, 86 ± 4% from C-2 and 11 ± 3% from C-3. The specificity of the transfer from C-2 increases as the internal energy of the fragmenting ions decreases, indicating that the results cannot be rationalized in terms of H/D interchanges between positions in the propyl group, but rather that the reaction involves specific, competing, H transfer reactions from each propyl position, in contrast to the high site specificity characteristic of the McLafferty rearrangement. Reaction (b) involves, almost exclusively, transfer of one hydrogen from C-2 and one from C-3 with only very minor participation of C-1 hydrogens. The [C6H5COOH]+ ion produced in reaction (a) fragments further to [C6H5CO]+ + OH. and the labelling results indicate some interchange of the carboxylic hydrogen with (ortho) ring hydrogens for those ions fragmenting in the first drift region. The extent of interchange is less than that observed for fragmentation of the same ion produced by direct ionization of benzoic acid or by reaction (a) in ethyl benzoate.  相似文献   

3.
Chemical ionization (CI) mass spectrometry with the reagents D2O, CD3OD, and CD3CN (given in order of increasing proton affinity) has been used to generate metastable [M + D]+ ions of a series of mono-, di-, and trifluorophenyl n-propyl ethers and analogs labeled with two deuterium atoms at the β position of the alkyl group. Loss of propene is the main reaction of the [M + D]+ ions, whereas dissociation with formation of propyl carbenium ions is of minor importance. The combined results reveal that the deuteron added in the CI process can be incorporated in the propene molecules as well as in the propyl carbenium ions. The extent to which the added deuteron is exchanged with the hydrogen atoms of the propyl group is markedly dependent on the position of the fluorine atom(s) on the ring and the exothermicity of the initial deuteron transfer. For 3-fluorophenyl n-propyl ether, exchange is not observed if D2O is the CI reagent, and occurs only to a minor extent in the experiments with the CI reagents CD3OD and CD3CN. Similar results are obtained for the 3,5-difluoro- and 2,4,6-trifluorophenyl ethers, whereas significant exchange is observed prior to the dissociations of the [M + D]+ ions of the 4-fluoro- and 2,6-difluorophenyl n-propyl ethers, irrespective of the nature of the CI reagent. These results are discussed in terms of the occurrence of initial deuteron transfer either to the oxygen atom or the aromatic ring followed by formation of an ion/neutral complex of a fluorine-substituted molecule and a secondary propyl carbenium ion. Initial deuteron transfer to the oxygen atom is suggested to yield complexes that can react by exchange between the added deuteron and the hydrogen atoms of the original propyl group prior to dissociation. By contrast, initial deuteron transfer to the ring is suggested to lead to complexes that react further by loss of propene molecules containing only the hydrogen/deuterium atoms of the original propyl entity.  相似文献   

4.
The appearance potentials for the [R'CO2H2]+ ion produced in the fragmentation process \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm R}^{\rm '} {\rm CO}_{\rm 2} {\rm R}} \right]_{}^{_.^ + } $\end{document} → [R'CO2H2]++[R? 2H] have been measured using mono-energetic electron impact techniques for ethyl, n-propyl, and i-propyl formates and acetates. The results indicate that at the threshold the product ion has the protonated acid structure with the hydrogen on the carbonyl and not the hydroxyl group, and that the neutral product for the propyl esters is the allyl radical and not the cyclopropyl radical. For the propyl formates and acetates the appearance potential of the [R'CO2H2]+ ion is identical with the adiabatic ionization potential of the parent ester (measured by photoelectron spectroscopy) indicating that fragmentation occurs for ground state molecular ions. A two-step mechanism is proposed to rationalize the results.  相似文献   

5.
Using specific deuterium labelling the mechanisms of the olefin elimination reactions leading to formation of [C6H7]+ in the H2 and CH4 chemical ionizatin mass spectra of ethylbenzene and n-propylbenzene (and to [C2H5C6H6]+ in the CH4 chemical ionization mass spectra) have been investigated. The results show that the reaction does not occur by specific migration of H from the β position of the alkyl group to the benzene ring. For ethylbenzene 23–29% of the migrating H originates from the α-position, while for n-propylbenzene H migration from all propyl positions is observed in the approximate ratio, position 1:position 2:position 3=0.30:0.22:0.48. It is proposed that the results can be explained on the basis of competing H migration from each alkyl position involving cyclic transition states of different ring sizes, rather than by H randomization within the alkyl chain.  相似文献   

6.
Quantitative analyses of the products of thermal degradation of poly(ethyl acrylate), poly(n-propyl acrylate), poly(n-butyl acrylate) and poly(2-ethylhexyl acrylate) have been made, principally by the combined application of GLC and mass and infrared spectroscopy. Data are recorded in mass balance tables. The major gaseous products are carbon dioxide and the olefin corresponding to the ester group. The minor gaseous products include the corresponding alkane, the alkane/olefin ratio being of the order of 10?2–10?3, and traces of carbon monoxide and hydrogen. The alcohol corresponding to the alkyl group is the major liquid product but there are also traces of monomer and the corresponding methacrylate. Alcohol production exhibits autocatalytic properties. The chain fragment fractions of the products are colored yellow and have average chain lengths of 3.2, 3.3, 3.6, and 5.6 for the ethyl, n-propyl, n-butyl and 2-ethylhexyl esters, respectively. The infrared spectra are similar to those of the parent polymers but with well defined differences. Insolubility develops in the ethyl, n-propyl, and n-butyl esters, but the residual material from poly(2-ethylhexyl acrylate) remains soluble even at very advanced stages of degradation. All of these products and reaction characteristics are accounted for in terms of radical reactions with a unique initiation step.  相似文献   

7.
The electron impact mass spectra of the 4-formyl-1, 3-dihydro-2H-imidazole-2-thione, its six 1-methyl(n-propyl, n-hexyl)-3-methyl(phenyl)-disubstptuted derivatives, and the 1,3-dihydro-1-phenyl-2H-imidazole-2-thiome are discussed. The fragmentation pattern is strongly influenced by the alkyl or phenyl N-substituents, as well as by the length of the alkyl chain. The odd-electron ions containing an N-phenyl substituent, but not a propyl or hexyl group, eject a hydrogen atom from the phenyl ring, while the presence of a long alkyl chain greatly enhances the loss of the sulphyhydryl radical and facilitates the expulsion of several alkenes, and alkyl and alkenyl radicals.  相似文献   

8.
The novel dioxomolybdenum(VI) complexes with methyl ( 1 ), ethyl ( 2 ), n‐propyl ( 3 ), i‐propyl ( 4 ), n‐butyl ( 5 ) and cyclohexyl ( 6 ) ester of 2‐mercaptonicotinic acid have been prepared in the reactions of MoO2Cl2 and MoO2(acac)2 (acac = 2,4‐pentandionate) with mercaptonicotinic acid in corresponding alcohol. The esterification reaction was catalyzed by MoV originated from the reduction of MoVI with mercaptonicotinic ‐SH group with simultaneous formation of S–S bond resulting from the condensation of two 2‐mercaptonicotinic molecules. The presence of MoV was proved by ESR spectra. The molecular and crystal structures of 1 , 2 , 3 and 4 as well as of the by‐products 1,1′‐dithio‐2,2′‐n‐butylnicotinoate ( 7 ) and tetramethylammonium hexachloromolybdate(V) ( 8 ) have been determined by a X‐ray single crystal diffraction. The complexes 1 – 4 contain MoO22+ core with octahedral coordination of each molybdenum atom complexed by two 2‐mercaptonicotinato N and S donor atoms.  相似文献   

9.
The thermoshrinking properties have been studied for the series of N-alkyl-acrylamide hydrogels (alkyl = methyl, ethyl, isopropyl, and n-propyl), which were prepared by free-radical copolymerization of the alkylacrylamide, sodium acrylate, and N,N′-methylenebis(acrylamide) (BIS) in aqueous solution. The reaction mixtures were prepared using the same nominal compositions in an effort to study the effect of the chemical structure of the alkyl substituent on the gel swelling behavior as a function of temperature. The alkyl group was found to have a pronounced effect on the features of gel swelling. Generally, larger alkyl chains produced dramatic decreases in gel transition temperature. In addition, a change in the nature of the swelling behavior from continuous to discontinuous was noted upon changing the alkyl group from ethyl to the two propyl derivatives. Discontinuous transitions were accompanied by hysteresis. The transition temperatures of the isomeric propyl derivatives were found to differ by 12°C, with n-propyl exhibiting the lower value. Additionally, a quantitative correlation was found between the gel transition temperatures and the water/octanol partition coefficients for appropriately chosen small molecule model compounds. The transition temperatures of other gels in the series, including the cyclopropyl derivative and the n-propyl/isopropyl copolymer gels (NIPA/NNPA), also fit this correlation. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2095–2102, 1998  相似文献   

10.
n-Octadecyl benzoate, taken as a model for long-chain n-alkyl carboxylates generally, loses C14H28 under electron impact to yield a product with the same elemental composition as the butyl benzoate molecular ion. This product retains quantitatively one hydrogen from C-6, and seems to be formed as an oxygen-protonated 4-benzoyloxybutyl radical. It reacts further to lose H2O, in which deuterium labeling demostrates that the second hydrogen atom comes predominantly from C-4. The intermediate reorganization, for which the driving force is presumably furnished by the instability associated with a primary radical, is pictured in terms of cyclization via bonding between the C-4 radical site and the benzoyl carbon concerted with hydrogen migration via a 4-membered quasicyclic transition state.  相似文献   

11.
Trisubstituted ethylenes, alkyl ring-substituted propyl 2-cyano-3-phenyl-2-propenoates, RPhCH?C(CN)CO2C3H7 (where R is H, 2-methyl, 3-methyl, 4-methyl, 4-ethyl, 4-propyl, 4-i-propyl, 4-butyl, 4-i-butyl, 4-t-butyl) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and propyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C-NMR. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 250–500°C range with residue (2–4% wt.), which then decomposed in the 500–800°C range.  相似文献   

12.
Both low and high resolution mass spectra of cis-4-cyclohexene-1,2-dicarboximide, its N-methyl, N-ethyl, N-n-propyl and N-n-butyl derivatives, and cyclohexane-1,2-dicarboximide were obtained at 70 eV. Each of the spectra exhibited characteristic nominal ions at masses 151, 136, 123 and a group of ions at masses 77, 78, 79, 80 and 81 of which m/e 80 was always the base peak except for the unsubstituted cyclohexane compound. The m/e 77 to 81 fragments are composed of carbon and hydrogen and derived from the cyclohexene ring. The ions possessing higher masses are heterocyclic and certain of them show doublets and triplets. Evidence for a 1,3 hydrogen migration was supplied by studies with the N-(ethyl-2-d3) derivative and evidence for a 1,4 migration by the N-(n-propyl-3-d3) derivative.  相似文献   

13.
The O-methyl ethers of aromatic and aliphatic aldoximes and ketoximes are characterized by hydrogen and skeletal rearrangements involving four-membered cyclic transition states. In the aliphatic compounds, four-centered rearrangement sometimes yields the species with the higher ionization potential, in contradiction of Audier's rule. The n-propyl oxime ethers show a novel skeletal rearrangement involving CH2O elimination. The [M—H]+ process in the aromatic aldoxime ethers and an [M—Cl]+ process in an o-chloro derivative involve atom elimination by intramolecular aromatic substitution. Aromatic aldoxime ethers and the isomeric nitrones behave completely differently upon electron-impact.  相似文献   

14.
n‐Heptyl­ammonium di­hydrogenarsenate, (C7H18N)[As(O)2(OH)2] (C7ADA), is ferroelastic at room temperature and isostructural with n‐heptyl­ammonium di­hydrogenphosphate (C7ADP). In contrast to the other known n‐alkyl­ammonium di­hydrogenphosphates (CnADP) and di­hydrogenarsenates (CnADA), two independent anions in the present structure are substantially disordered (~88 and ~12%, respectively). There are strong hydrogen bonds between the di­hydrogenarsenates themselves, and moderate hydrogen bonds between the di­hydrogenarsenates and the n‐alkyl­ammonium groups. The hydrogen‐bond distances correspond well to those observed in the di­hydrogenphosphates. There are two H atoms in the structure which are involved in asymmetric hydrogen bonds between respective oxy­gen pairs. These H atoms jump from the donor to the acceptor O atoms during ferroelastic switching.  相似文献   

15.
Treatment of the 2-R-pyrimidines ( 1 , R = methyl, ethyl, i-propyl and t-butyl) with potassium amide/liquid ammonia/potassium permanganate leads to amination at C-4(6). The yields of the 4(6)-amino compounds 3 in-crease in the order 2-methyl (10%), 2-ethyl (30%), 2-i-propyl (45%) and 2-t-butyl (60%). Treatment of the 2-R-N-methylpyrimidinium salts ( 4 , R = hydrogen, methyl) with liquid ammonia/potassium permanganate leads to a regiospecific imination at C-6, the corresponding 2-R-1,6-dihydro-6-imino-1-methylpyrimidines 6 being obtained in 80-85% yield. It is proved by 15N-labelling that no ring opening is involved in these imination reactions. Treatment of the imino compounds with base leads to the corresponding 2.R-6-methylamino-pyrimidines 8 , involving, as proved by 15N-labelling, an ANRORC-mechanism. 2-t-Butyl-1-ethylpyrimidinium tetrafluoroborate ( 9b ) when treated with liquid ammonia/potassium permanganate undergoes N-deethylation, 2-t-butylpyrimidine being exclusively formed.  相似文献   

16.
17.
Abstract

Excess molar volumes at 298.15 K of the ternary mixtures (propyl ethanoate + n-heptane + n-decane), (propyl propanoate + n-heptane + n-decane) and (propyl butanoate + n-heptane + n-decane) were determined using a DMA 60/602 Anton Paar densimeter. All the experimental values were compared with the results obtained with empirical expressions for estimating ternary properties from binary data and with the Nitta-Chao group-contribution model. For these ternary mixtures the same behaviour that had been observed in ester + n-alkane binary systems was found: excess volumes decrease when the ester length increases.  相似文献   

18.
Crystals of n‐butyl­ammonium di­hydrogenphosphate, C4H9NH3+·H2PO4?, reveal ferroelasticity at room temperature and a number of phase transitions when heated up to approximately 373 K. Some of these phase transitions show hysteresis effects. All atoms except two H atoms exist in pairs linked by the lost symmetry operations derived from the prototypic space group P2/b21/n21/a. Each of these two different H atoms is involved in an asymmetric hydrogen bond between an oxy­gen pair. Ferroelastic switching is concomitant with jumps of these hydrogen species from donor to acceptor O atoms. The studied structure belongs to the structural family of n‐hexyl‐ to n‐decyl­ammonium di­hydrogenphosphates and differs by localization of alternating layers from n‐propyl‐ and n‐pentyl­ammonium di­hydrogenphosphates. The studied crystal was slightly twinned; the minor domain constituted approximately 2%.  相似文献   

19.
The mechanism of propene elimination from metastable methyleneimmonium ions is discussed. The first field-free region fragmentations of complete sets of isotopically labelled methyleneimmonium ions (H2C = $ \mathop {\rm N}\limits^{\rm +} $+R1R2: R1 = R2 = n-C3H7; R1 = R2 = i-C3H7; R1 = n -C3H7; R2 = C2H5; R1 = n-C3H7; R2 = CH3; R1 = n-C3H7; R2 = H) were used to support the mechanism presented. The relative amounts of H/D transferred are quantitatively correlated to two distinct mathematical concepts which allow information to be deduced about influences on reaction pathways that cannot be measured directly. Propene loss from the ions examined proceeds via ion-neutral complex intermediates. For the di-n-propyl species rate-determining and H/D distribution-determining steps are clearly distinct Whereas the former corresponds to a 1,2-hydride shift in a 1-propyl cation coordinated to an imine moiety, the latter is equivalent to a proton transfer to the imine occurring from the 2-propyl cation generated by the previous step. For the diisopropyl-substituted ions which directly form the 2-propyl cation-containing complex, the rate-determining hydride shift vanishes. The 2-propyl cation-containing complex can decompose directly or via an intermediate proton-bridged complex. Competition of these routes is not excluded by the experimental results. Assuming a 2:1:3 distribution, a preference for the α- and β-methylene of the initial n-propyl chain as the source of the hydrogen transferred is detected for n-propylimmonium ions containing a second alkyl chain R2. This preference shows a clear dependence on the steric influence of R2. During the transfer step isotopic substitution is found to affect the H/D distribution strongly. For the alternative route of McLafferty rearrangement leading to C2H4 loss, specific γ-H transfer is observed.  相似文献   

20.
The mechanism of propene loss from protonated phenyl n-propyl ether and a series of mono-, di-, and trimethylphenyl n-propyl ethers has been examined by chemical ionization (CI) mass spectrometry in combination with tandem mass spectrometry experiments. The role of initial proton transfer to the oxygen atom and the aromatic ring, respectively, has been probed with the use of deuterated CI reagents, D2O, CD3OD, and CD3CN (given in order of increasing proton affinity), in combination with deuterium labeling of the β position of the n-propyl group or the phenyl ring. The metastable [M + D]+ ions of phenyl n-propyl ether—formed with D2O as the CI reagent—eliminate C3H5D and C3H6 in a ratio of 10:90, which indicates that the added deuteron is incorporated to a minor extent in the expelled neutral species. In the experiments with CD3OD as the CI reagent, the ratio between the losses of C3H5D and C3H6 from the metastable [M + D]+ ions of phenyl n-propyl ether is 18:82, whereas the ratio becomes 27:73 with CD3CN as the reagent. A similar trend in the tendency to expel a propene molecule that contains the added deuteron is observed for the metastable [M + D]+ ions of phenyl n-propyl ether labeled at the β position of the alkyl group. Incorporation of a hydrogen atom that originates from the aromatic ring in the expelled propene molecule is of negligible importance as revealed by the minor loss of C3H5D from the metastable [M + H]+ ions of C6D5OCH2CH2CH3 irrespective of whether H2O, CH3OH, or CH3CN is the CI reagent. The combined results for the [M + D]+ ions of phenyl n-propyl ether and deuterium-labeled analogs are suggested to be in line with a model that assumes that propene loss occurs not only from species formed by deuteron transfer to the oxygen atom, but also from ions generated by deuteron transfer to the ring. This is substantiated by the results for the methyl-substituted ethers, which reveal that the position as well as the number of methyl groups bonded to the ring exert a marked effect on the relative importances of the losses of C3H5D and C3H6 from the metastable [M + D]+ ions of the unlabeled methyl-substituted species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号