首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An energetic study of the production of [C7H8N]+ and [C6H7]+ fragment ions from o-toluidine and N-methylaniline is reported. The mechanisms for the formation of the ions are suggested. Metastable peaks associated with the formation and fragmentation of reactive [C7H8N]+ and [C6H7]+ ions were detected and kinetic energy released were determined. The results indicate that the [C7H8N]+ ion is formed at threshold from o-toluidine with an aminotropylium structure whereas for N-methylaniline the ion is formed with anN-phenylmethaniminium structure. [C6H7]+ ions are believed to be formed at threshold from the two precursors with a protonated benzene structure.  相似文献   

2.
The reverse activation energy, Erev, for the dissociation [C3H7]+ → [C3H5]+ + H2 has been determined as 0.24 ± 0.06 eV from measurements of the AP of [C3H5]+ produced by electron-impact from thermally generated sec-C3H7 radicals. The energy release observed in the corresponding metastable dissociation is 0.21 ± 0.01 eV, indicating that virtually all of Erev is partitioned as translational Kinetic energy of the fragmentation products. The metastable ion peak shape is also discussed with respect to the evaluation of the energy release.  相似文献   

3.
The internal energies of [C3H7]+ ions contributing to the metastable peak [C3H7]+ → [C3H5]+ + H2 are higher (by perhaps > 100 kJ mol?1) than those of the ion contributing to the threshold current in appearance energy measurements on [C3H5]+. The measured appearance energy may lead to an underestimation of the activation energy, i.e. negative ‘kinetic shift’, due to quantum, mechanical tunnelling. The distribution of energy released in the decomposition can be explained on the basis that much of the reverse activation energy and a statistical proportion of the excess energy is released as translation.  相似文献   

4.
Appearance energies for [C7H7]+ and [C6H5]+ fragment ions obtained from methylphenol isomers were measured at the threshold using the electron impact technique. Different processes for the formation of the ions are suggested and discussed. Metastable peaks were detected and the kinetic energies released were determined. The results indicate that [C7H7]+ ions are formed from metbylpbenois with both benzyl and tropylium structures, whereas [C6H5]+ ions are formed with the phenyl structure at the detected thresholds. Kinetic energies released on fragmentation of reactive [ C7H7]+ and [C6H5]+ ions were used as a probe for the structure of the ions at 70 eV.  相似文献   

5.
[C13H9S]+, [C14H11]+, [C13H11]+ and [C8H7S]+ ions with unknown structures were generated from two [C14H12S]precursor ions by fragmentation reactions that must be preceded by extensive rearrangements. Ions with the same compositions, each with several initial structures, were prepared by simple bond-breaking reactions. Metastable characteristics were compared for each of the four types of ions. It was found than in all cases fast isomerization reactions occur prior to fragmentation, so that no information about the unknown ion structures could be obtained by comparison of the observed fragmentations of metastable ions.  相似文献   

6.
The appearance energies for the [C7H7]+ and [C8H9]+ fragment ions produced in the fragmentation of the C-1? C-4 monosubstituted alkyl benzenes have been measured by photon impact. The mean heat of formation calculated for [C7H7]+ is 205.3 ± 1.9 kcal mol?1 which is consistent with a threshold tropylium structure. For [C8H9]+ the mean heat of formation is calculated to be 199.2 ± 1.3 kcal mol?1 which can be equated with either a methyl tropylium or α-phenylethyl structure at threshold. Some evidence is provided for the existence of the α-phenylethyl ion.  相似文献   

7.
Additional evidence for the rearrangement of the 1- and 3-phenylcyclobutene radical cations, their corresponding ring-opened 1,3-butadiene ions and 1,2-dihydronaphthalene radical cations to methylindenetype ions has been obtained for the decomposing ions by mass analysed ion kinetic energy spectroscopy (MIKES). The nature of the [C9H7]+ and [C10H8] daughter ions arising from the electron ionization induced fragmentation of these [C10H10] precursors has been investigated by collisionally activated dissociation (CAD), collisional ionization and ion kinetic energy spectroscopy. The [C9H7]+ produced from the various C10H10 hydrocarbons are of identical structure or an identical mixture of interconverting structures. These ions are similar in nature to the [C9H7]+ generated from indene by low energy electron ionization. The [C10H8] ions also possess a common structure, which is presumably that of the maphthalene radical cation.  相似文献   

8.
[C2H3O]+ ions with the initial structures [CH3CO]+, and [CH2CHO]+ cannot be distinguished on the basis of their collisional activation spectra, demonstrating that these isomers interconvert at energies below their threshold for decomposition. Self-protonation of ketene leads to the [CH3CO]+ ion, while the [C2H3O]+ ion generated from glycerol most probably has the structure of an oxygen protonated ketene [CH2?C?OH]+.  相似文献   

9.
The decomposition reactions of [C2H5O]+ ions produced by dissociative electron-impact ionization of 2-propanol have been studied, using 13C and deuterium labeling coupled with metastable intensity studies. In addition, the fragmentation reactions following protonation of appropriately labeled acetaldehydes and ethylene oxides with [H3]+ or [D3]+ have been investigated. In both studies particular attention has been paid to the reactions leading to [CHO]+, [C2H3]+ and [H3O]+. In both the electron-impact-induced reactions and the chemical ionization systems the fragmentation of [C2H5O]+ to both [H3O]+ and [C2H3]+ proceeds by a single mechanism. For each case the reaction involves a mechanism in which the hydrogen originally bonded to oxygen is retained in the oxygen containing fragment while the four hydrogens originally bonded to carbon become indistinguishable. The fragmentation of [C2H5O]+ to produce [CHO]+ proceeds by a number of mechanisms. The lowest energy route involves complete retention of the α carbon and hydrogen while a higher energy route proceeds by a mechanism in which the carbons and the attached hydrogens become indistinguishable. A third distinct mechanism, observed in the electron-impact spectra only, proceeds with retention of the hydroxylic hydrogen in the product ion. Detailed fragmentation mechanisms are proposed to explain the results. It is suggested that the [C2H5O]+ ions formed by protonation of acetaldehyde or ionization of 2-propanol are produced initially with the structure [CH3CH?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^ + $\end{document}H] (a), but isomerize to [CH2?CH? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^ + $\end{document}H2] (e) prior to decomposition to [C2H3]+ or [H3O]+. The results indicate that the isomerization ae does not proceed directly, possibly because it is symmetry forbidden, but by two consecutive [1,2] hydrogen shifts. A more general study of the electron-impact mass spectrum of 2-propanol has been made and the fragmentation reactions proceeding from the molecular ion have been identified.  相似文献   

10.
The principal fragmentation reactions of metastable [C3H7S]+ ions are loss of H2S and C2H4. These reactions and the preceding isomerizations of [C3H7S]+ ions with six different initial structures were studied by means of labelling with 13C or D. From the results it is concluded that the loss of H2S and C2H4 both occur at least mainly from ions with the structure [CH3CH2CH? SH]+ or from ions with the same carbon sulfur skeleton, with the exception of the ions with the initial structure [CH3CH2S? CH2]+, which partly lose C2H4 without a preceding isomerization. For all ions, more than one reaction route leads to [CH3CH2CH?SH]+. It is concluded that the loss of H2S is at least mainly a 1,3-elimination from the [CH3CH2CH?SH]+ ions. Both decomposition reactions are preceded by extensive but incomplete hydrogen exchange.  相似文献   

11.
The unimolecular metastable and collision-induced fragmentation reactions of [C3H7O]+ ions produced by gas-phase protonation of acetone, propanal, propylene oxide, oxetan and allyl alcohol have been studied. The CID studies show that protonation of acetone and allyl alcohol yield different stable ions with distinct structures while protonation of propanal or propylene oxide yield [C3H7O]+ ions of the same structure. Protonated oxetan rearranges less readily to give the same structure(s) as protonated propanal and propylene oxide. The [C3H7O]+ ions fragmenting as metastable ions after formation by CI have a higher internal energy than the same ions fragmenting after formation by EI. Deuteronation of the C3H6O isomers using CD4 reagent gas shows that loss of C2H3D proceeds by a different mechanism than loss of C2H4. The results are discussed in terms of potential energy profile for the [C3H7O]+˙ system proposed earlier.  相似文献   

12.
The charge exchange mass spectra of 14 C6H12 isomers have been determined using [CS2], [COS], [Xe], [CO], [N2] and [Ar] as the major reactant ions covering the recombination energy range from ∼10.2 eV to ∼15.8 eV. From the charge exchange data breakdown graphs have been constructed expressing the energy dependence of the fragmentation of the isomeric [C6H12] molecular ions. The electron impact mass spectra are discussed in relation to these breakdown graphs and approximate internal energy distribution functions derived from photoelectron spectra.  相似文献   

13.
The MIKE spectra of amines RCH2NH2 containing more than five carbon atoms exhibit m/z 44 and m/z 58 peaks. The structures of these [C2H6N]+ and [C3H8N]+ ions have been established by collisional activation spectra. The results are in agreement with the fragmentation mechanisms previously proposed.  相似文献   

14.
The ionization and [C4H7]+ appearance energies for a series of C4H7CI and C4H7Br isomers have been measured by dissociative photoionization mass spectrometry. Cationic heats of formation, based on the stationary electron convention, are derived. No threshold ion is observed with a heat of formation corresponding to the trans-1-methylallyl cation, although there is evidence for formation of the less stable cis isomer. A 298 K heat of formation of 871 kJ mol?1 is obtained for the cyclopropylcarbinyl cation, with the cyclobutyl cation having a higher value of 886 kJ mol?1. At the HF/6-31G** level, ab initio molecular orbital calculations show the 2-butenyl, isobutenyl and homoallyl cations to be stable forms of [C4H7]+, being less stable than the trans-1-methylallyl cation by 101 kJ mol?1, 159 kJ mol?1 and 164 kJ mol?1, respectively. However, threshold formation is not observed for any of these ions, the fragmentation of appropriate precursor molecules producing [C4H7]+ ions with lower energy structures.  相似文献   

15.
The metastable peak resulting from the fragmentation of [C7H7]2+? ions fram a variety of sources shows structure due to the presence of two reactions releasing different amounts of translational energy. The translational energy differences has been measured as 0.52 ± 0.04eV and is thought to be due to the formation of product ions of different structure via competing reactions from a single transition state. The possible structures of these ions are discussed, and it is proposed that the effect observed is due to the formation of [C3H3]+ ions in two forms, cyclopropenyl and proparg1. The metastable singly charged ions which also lead to product ions of formula [C3H, 3]+.  相似文献   

16.
A combination of charge-stripping and beam-scattering techniques has been used to study the molecular states formed when a fast beam of [C2H2]+ and [C2H3]+ in several isotopic forms are neutralized by electron transfer from metal target atoms (K, Na, Mg and Zn). For [C2H3]+ the isotopic compositions and relative abundances of product states were found to be insensitive to the method of ion preparation (electron impact and chemical ionization). Ground state neutrals are formed in partial abundance when Mg or Zn is used as a target atom. With low ionization potential targets (K and Na) excitel dissociative states of C2H2 and C2H3 are formed as major beam constituents. For these states decomposition products have been identified and fragmentation energies measured. The excited states of C2H2 and C2H3 lie alout 6.8 eV and 2.9 eV, respectively, above their stable ground states. The discussion focuses on the possible identity of the excited states and their structural relations to the precursor ions.  相似文献   

17.
From deuterium labelling experiments it was concluded that metastable molecular ions of ethyl methyl sulfide lose a methyl radical with the formation of both [CH3S?CH2]+ amd [CH3CH?SH]+˙ The fragmentation reactions of metastable ions generated with these structure are losses of C2H2, H2S and CH4. These reactoins and the preceding isomerizations have also been studied by means of deuterium labelling. From the results it is concluded that the three fragmentation reactions most probably occur from ions with a C? C? S skeleton. Appearance energy measurements for ions generated with the two structures above and all give rise to the same ΔHf value for these three isomeric forms. Ab initio molecular orbitals calculations confirm that these three ions fortuitously have very similar heats of formation. A potential energy diagram rationalizing the isomerizations and the principal fragmentation reaction is presented.  相似文献   

18.
The dissociative spectrum of the [C6H5S]+ ion derived by charge inversion from [C6H5S]?, shows a variety of fragmentations including the competitive losses of H?, C3H4 and the formation of [CHS]+. The spectrum of a deuteriated derivative shows that these three processes are preceded or accompanied by H/D scrambling. The corresponding [C6H5O]+ species also undergoes hydrogen scrambling prior to fragmentation. In marked contrast, the ion [p-MeC6H4S]+ does not undergo hydrogen randomization between the methyl and aryl groups, and positional integrity is retained during fragmentation. These results are compared with the properties of the same ions produced by conventional ionization.  相似文献   

19.
The effect of changes in the internal energy distribution of the fragmenting ion on the ratio of metastable ion intensities for two competing fragmentation reactions has been investigated both theoretically and experimentally. Model calculations have shown that if the competing reactions have significantly different activation energies the metastable intensity ratio does depend on the internal energy distribution although large changes are necessary before the ratio changes by more than a factor of two. Experimentally the metastable characteristics of [C3H7O]+ ions of nominal structures [CH3CH2O+?CH2] (I), [(CH3)2C?O+H] (II), [CH3CH2CH?O+H] (III) and [CH3O+?CHCH3] (IV) have been examined. For each structure the metastable characteristics are found to be distinctive and independent of changes in the internal energy distribution of the fragmenting ion where these changes result from altering the precursor of the [C3H7O]+ ions. It is suggested that these internal energy changes can be estimated from the fraction of [C3H7O]+ ions which fragment in the ion-source. It is concluded that structures I to IV represent stable and distinct ionic structures.  相似文献   

20.
Metastable transitions arising from the loss of C2H2 and HF from the [C7H6F]+ ion have been investigated. Under standard operating conditions, the intensity ratio of the metastable peaks was approximately independent of the precursor of the [C7H6F]+ ion, indicating fragmentation from a common structure such as the symmetrical fluorotropylium ion. The variation of the intensity ratio with several instrumental parameters suggests that I(C2H2 loss)/I(HF loss) rises as the internal energy of the [C7H6F]+ ion falls. Possible interference from discrimination effects at the β-slit when comparing intensity ratios for first and second field free region are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号