首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aroylphenylacetylenes (I) reacted with ethyl and phenyl hydrazinecarboxylates (II) to give ω-aroylacetophenone-N-ethoxycarbonyl-(Vla-f) and N-phenoxycarbonyl-(VIg-l) hydrazones, respectively. When these were healed with acetic anhydride they were converted to 5-aryl-1-ethoxycarbonyl-and 1-phenoxycarbonyl-3-phenylpyrazoles (VII), respectively, which on hydrolysis with rnethanolic potassium hydroxide gave the corresponding 5(3)aryl-3(5)phenylpyrazoles (VIII). Reaction of the above acetylenic ketones with guanidine hydrochloride in the presence of sodium carbonate gave the corresponding 2-amino-6-aryl-4-phenylpyrimidines (XII). Similarly, reaction of benzoylphenylacetylene with thiourea and with urea in the presence of sodium ethoxide gave rise to 2,4-diphenylpyrimidine-2-thione (XVIII) and 2,4-diphenyl-2(1H)pyrimidin-one (XV), respectively.  相似文献   

2.
Methylglyoxalyl chloride arylhydrazones (III) react with an ethanolic solution of thiourea to give 2-amino-4-methyl-5-arylazothiazoles (XII) instead of the expected 2-acetyl-4-aryl-5-imino-Δ2-1,3,4-thiadiazolines (V) which were obtained from III and potassium thiocyanate. 3-Thiocyanato-2,4-pentanedione (IV) coupled with diazotized anilines to give V. The postulated routes to formation of V and XII from III are given. Nitrosation of V gave the corresponding N-nitroso derivatives (VI) which decomposed upon refluxing in dry xylene to give 2,4-disubstituted-Δ2-1,3,4-thiadiazolin-5-ones (VII). Boiling of either V or VI with hydrochloric acid gave the hydrochloride salt (VIII). The thiadiazolines V gave the respective N-acyl derivatives (IX) and (X) with acetic anhydride and benzoyl chloride in pyridine.  相似文献   

3.
A general procedure for the preparation of aminocoumarins and aminohydroxycoumarins under mild conditions is described. Amino- and acetamidoaminocoumarins were prepared by reduction of the corresponding nitro derivatives with sodium borohydride in the presence of 10% palladium on charcoal. Acid hydrolysis of the acetamidoaminocoumarins with (a) concentrated hydrochloric acid in ethanol, or (b) with 1N hydrochloric acid under reflux, gave diaminocoumarins and aminohydroxycoumarins, respectively. Condensation of the ethyl ester of glycine with salicylaldehyde gave 3-salicylideneaminocoumarin (XIII), the Schiff base of 3-aminocoumarin (XII). Acid hydrolysis of XIII under the above mentioned conditions, (a) and (b), gave XII and 3-hydroxycoumarin (XVI), respectively. Hydrogenation of compound XIII in dioxane or in dimethylformamide with 10% palladium on charcoal gave 3-salicylaminocoumarin (XVII), while hydrogenation of XII, XIII or XVII in acetic acid with traces of water and palladium black gave the amino acid o-tyrosine.  相似文献   

4.
Abstract

3,5-Dicyano-6-mercapto-4-phenylpyridin-2(1H)-one (1) was reacted with ethyl chloroacetate to give compound (II) which on reaction with hydrazine hydrate gave the corresponding hydrazide derivative (III). Acylation of (III) with acetic acid, phenylisocyanate, or phenylisothiocyanate gave different monoacyl derivatives (IV-VI). Condensation of III with aromatic aldehydes and acetylacetone gave compounds VIIa-c, VIII respectively. Compound I was reacted with chloroanilides, bromoacetone and phenacyl bromide to yield the IX-XI; these and compound II gave thieno[2,3-b]-pyridines (XU-XV) on treatment with sodium ethoxide solution. Reaction of XII with acetic anhydride gave the diacetyl derivative XVI. Hydrolysis of compound XII with sodium hydroxide gave the corresponding acid (XVII) which on treatment with acetic anhydride gave the oxazine derivative (XVIII). Reaction of oxazine compound XVIII with ammonium acetate and hydrazine hydrate gave pyrido[3′,2′:4,5] thieno[3,2-d]pyrimidin-4.7-dione derivative (XIX) and (XX) respectively. The N-amino derivative (XX) was reacted with 4-nitrobenzaldehyde to give the corresponding azomethine (XXI).

Significant in vitro gram-positive and gram negative antibacterial activities as well as anti-fungal effect were observed for some members of the series.  相似文献   

5.
The treatment of N-[2-(1H-indol-3-yl)ethyl]alkanamide, 1 (1), with phosphorus oxychloride under controlled conditions gave l-alkyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-ol, 2 . The reaction of 2 with acetic anhydride or with methyl isocyanate at room temperature resulted in the formation of amido carbinol 3 and urea carbinol 7, respectively. The former was transformed into amido ester 4 by boiling acetic anhydride. When the reaction of 3 with acetic anhydride was carried out in the presence of excess triethylamine at 105°, C-N bond cleavage of the tetrahydropyridine ring took place with concurrent bis(N-acetylation) to give the enol ester derivative 5 . The structures of all compounds are consistent with chemical and spectral evidence.  相似文献   

6.
Condensation of 2-bromoacetophenones with sodium succinimide gave N-phenacylsuccinimides ( 1 ) which were opened with sodium hydroxide to N-phenacylsuccinamic acids ( 2 ). The latter were cyclized to 5-aryl-2-oxazolepropionic acids ( 3 ) in sulfuric acid. Similar cyclization of N-phenacylphthalamic acid ( 5 ) and succinic acid 2-benzoylhydrazide ( 7 ) gave o-(5-phenyl-2-oxazolyl)benzoic acid ( 6 ) and 5-phenyl-1,3,4-oxadiazole-2-propionic acid ( 8 ). The succinamic acids 2 and the phthalamic acid 5 were observed to recyclize to the corresponding imides ( 1 and 4 ) on heating, and the succinic acid hydrazide 7 was similarly cyclized to N-benzamidosuccinimide ( 9 ) with acetic anhydride. Antiinflammatory screening data are reported for 3 , 6 and 8 .  相似文献   

7.
Heating N4-phenylphosphinyl-bis-(N1-dimethyl) semicarbazide in the presence, but not in the absence, of iodomethane gave 2-phenyl-5-dimethylamino-4,6-dioxo-1,3,5,2-triazaphosphorine 2-oxide and a mechanism for this reaction is proposed. The compound was also prepared by the addition of 1,1-dimethylhydrazine to phenylphosphonic diisocyanate. Treatment of the product with excess iodomethane gave a polymeric material and 1,1,1-trimethylhydrazinium iodides.  相似文献   

8.
Cyclodehydrogenation of the benzalhydrazino derivatives 5 and 6 gave 6-cyano-7-(4-methoxyphenyl)- 2-phenyl-5-oxo-1,2,4-triazolo[1,5-a]pyrimidine (8) and 6-cyano-7-(4-methoxyphenyl)-4-methyl-2-phenyl- 5-oxo-1,2,4-triazolo[1,5-a]pyrimidine (9) respectively. Melhylation, acetylation and benzylation of 8 gave the corresponding N-methyl, acetyl and benzyl derivatives 10-12 . Methylation of 5 with dimethylsulfate gave 2-benzalhydrazino-5-cyano-3-methyl-6-(4-methoxyphenyl)-3,4-dihydropyrimidin-4-one (6) , of which the reaction with acetic anhydride in pyridine afforded the N-acetylbenzalhydrazino derivative 15 . The latter was also prepared from acetylation of 5 followed by medthylation with iodomethane. Acetylation of 5 with boiling acetic anhydride afforded the diacetyl derivative 16 , whereas its benzylation gave the mono-N-benzyl derivative 14 .  相似文献   

9.
p-Nitrobenzoylphenylacetylene (I) reacted with acylhydrazines (IIa-d) to give the corresponding hydrazones (VIa-d), which when treated with acetic anhydride, gave the same substituted pyrazole (VII). Hydrolysis of the latter with methanolic potassium hydroxide gave the pyrazole derivative (IX). The reaction of I with ethyl and phenyl hydrazinecarboxylates (IIe,f) led to the formation of the hydrazones (VIe) and (VIf), respectively, whereas with methyl- and phenylhydrazines it produced the pyrazoles (X) and (XI), respectively. However, guanidine hydrochloride gave with acetylenic ketone (I), the pyrimidine (XV).  相似文献   

10.
The reaction of 6-chloro-2-[1-methyl-2-(Mmemylthiocarbamoyl)hydrazino]quinoxaline 4-oxide 5 with acetic anhydride or trifluoroacetic anhydride resulted in dehydrative cyclization to give 2-(N-acetyl)-memylamino-8-chloro-4-methyl-4H-1,3,4-thiadiazino[5,6-b]quinoxaline 6 or 8-chloro-2-(N-trifluoroacetyl)methylamino-4-methyl-4H-1,3,4-thiadiazino[5,6-b]quinoxaline 9 , respectively. The oxidation of compound 6 or 9 with 2-fold molar amount of m-chloroperbenzoic acid afforded the 4H-1,3,4-thiadiazino-[5,6-b]quinoxaline 1,1-dioxide 8 or 13 , respectively. The acetyl group of compound 6 was hardly hydrolyzed, but the trifluoroacetyl group of compound 9 was easily hydrolyzed to change into 8-chloro-4-methyl-2-memylamino-4H-1,3,4-thiadiazino[5,6-b]quinoxaline 10 . The acylation of compound 10 with acetic anhydride, trifluoroacetic anhydride, phenyl isocyanate, and chloroacetyl chloride furnished the 2-(N-acetyl)methylamino 6 , 2-(N-trifluoroacetyl)methylamino 9 , 2-(1-methyl-3-phenylureido) 11 , and 2-(N-chloroacetyl)methylamino 12 derivatives, respectively.  相似文献   

11.
Aziridine reacted with phosgene in the presence of an acid acceptor or with 1,1′-carbonylbis(pyridinium) chloride to produce 1-(aziridine)carbonyl chloride (XII) or 1-(aziridine)carbonyl pyridinium chloride (XIII), respectively, as transient intermediates. Attempts to trap and observe (XII) and (XIII) at -10° were unsuccessful. These elusive materials underwent facile rearrangements to 2 - chloroethyl isocyanate under these conditions. Aziridine reacted with 1,1′-carbonylbis(triethylammonium)chloride (VII) at -20° to give 1-(aziridine) carbonyl triethylammonium chloride (X) as a transient intermediate which proceeded to 2-chloroethyl isocyanate. At -10° this reaction produced N,N-diethyl-1-aziridinecarboxamide. Aziridine reacted with a large excess of phosgene in the absence of an acid acceptor to give N-2-(chloroethyl) carbamoyl chloride (III), 1,1′-bis(2-chloroethyl) urea (IV) and 2-(β-chloroethylamino)-2-oxazoline hydrochloride (V). Possible mechanisms for these reactions are discussed.  相似文献   

12.
2-[2-(2,4-Dimethyl-3-oxopentyl)]benz, imidazoles ( 2-10 ) were obtained by allowing o-phenyl-enediamines to react with 2,2,4,4-tetramethyl-1,3-cyclobutanedione ( 1 ). When refluxed with acetic anhydride (or sterically unhindered homologs) they cyclize in the presence of base to yield the pyrido[1,2-α]benzimidazoles ( 16-21 and 24, 25 ). The 2-[2-(2,4-dimethyl-3-oxo-pentyl) ]imidazolines ( 12 and 14 ) were obtained by reaction of 1,2-diaminoethane and 1,2-diaminopropane, respectively, with 1 . When allowed to react with acetic anhydride/base, they gave only N-acylated products.  相似文献   

13.
Oxidation of 1-methyl-3-methoxycarbonyl-β-carboline with selenium dioxide gave 1-formyl-3-methoxycarbonyl-β-carboline II . Compound II reacted with acetic or propionic anhydride to give easily the 2-methoxycarbonyl-6H-indolo[3,2,1-d,e][1,5]naphthyridin-6-ones III ; reaction of II with some primary amines led to the formation of the Schiff bases IV , which were reduced to the 1-aminomethyl-3-methoxycarbonyl-β-carbolines V with sodium borohydride. Cyclization of V with aqueous formaldehyde led to the pyrimido[3,4,5-lm]pyrido[3,4-b]indoles VI . Analogously, cyclization with formaldehyde, acetone or 1,1′-carbonyldiimidazole of the 3-aminomethyl- 1,2,3,4-tetrahydro-β-carbolines VIII , obtained by reaction of 3-methoxycarbonyl-1,2,3,4-tetrahydro-β-carboline VII with amines followed by lithium aluminium hydride reduction of the resulting amides, gave the imidazo[1′,5′-1,6]pyrido[3,4-b]indoles IX and X . Dieckmann cyclization of 3-methoxycarbonyl-2-[(3-ethoxycarbonyl)-1-propyl]-1,2,3,4-tetrahydro-β-carboline XI led to a 1:1 mixture of the β-ketoesters XII and XIII , which underwent deethoxycarbonylation to 5,6,8,9,10,11,11a,12-octahydroindolo[3,2-b]quinolizin-11-one XIV . Finally, the polyphosphoric acid (or esters) catalyzed cyclization of the N-acyl derivatives XVI of 3-hydrazinocarbonyl-β-carboline XV led smoothly to the 3-(1,3,4-oxadiazol-2-yl)-β-carbolines XVII .  相似文献   

14.
Reaction of N-(4-pyridylmethyl)benzamide N-oxides 2 with 1,3-diphenyl-1,3-propanedione in the presence of acetic anhydride afforded 1,1-dibenzoyl-2-(4-pyridyl)-2-(benzoylamino)ethanes 4 in low yield. Treatment of N-[(α-acetoxy)4-pyridylmethyl]benzamides 3 with 1,3-diphenyl-1,3-propanedione in the presence of triethylamine and chloroform as a solvent provided 4 in high yield. Reaction of 4 with nucleophiles as hydrazine, methyl and phenylhydrazine gave the corresponding pyrazoles 5 .  相似文献   

15.
Treatment of 2-(4,9-dihydro-3H-pyrido[3,4-b]indol-1-yl)-1-methylcyclohexanol ( 2a ) with acetic anhydride or methyl isocyanate gave 2-acetyl-2,3,4,9-tetrahydro-1-(6-oxoheptylidene)-1H-pyrido[3,4-b]indole ( 3 ) or 1,3,4,9-tetrahydro-N-methyl-1-(6-oxoheptylidene)-2H-pyrido[3,4-b]indole-2-carboxamide ( 4 ), respectively. Simpler analogues, 1-alkyl-4,9-dihydro-3H-pyrido[3,4-b]indoles, 7 , subjected to identical reaction conditions, gave 2-acetyl-1-alkylidene-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indoles 8 and 1,3,4,9-tetrahydro-N-methyl-1-alkyli-dene-2H-pyrido[3,4-b]indole-2-carboxamides 9 , respectively. A limited lanthanide shift reagent study to determine stereochemical assignments was also performed.  相似文献   

16.
As a continuation of our work on the reaction of N-pyridylmethyl-3,5-dimethylbenzamide N-oxides with acetic anhydride, we now report a study of the reaction of N-(2-pyridylmethyl)-3,5-dimethylbenzam.de N-oxide ( 5 ) and N-(3-pyridylmethyl)-3,5-dimethylbenzamide N-oxide ( 6 ) with acetic anhydride. Compound 5 gave N,N′-di(3,5.dimethylbenzoyl)-1,2-di(2.pyridyl)ethenediamine ( 7 ) and 3,5-dimethylbenzamtde ( 8 ). Compound 6 afforded three products formulated as 2-acetoxy-3-(3,5-dimethylbenzoylaminomethyl)pyridine ( 12 ), 3-(3,5-dimethylbenzoylaminomethyl)-2-pyridone ( 13 ) and 5-(3,5-dimethylbenzoylaminomethyl)-2-pyridone ( 14 ). Analytical and spectral data are presented which support the structures proposed.  相似文献   

17.
The reaction of 1-methyl-3-(methylsulfinyl)-4(1H)quinolinone ( 1 ) with acetic anhydride and thionyl chloride gave 3-[[(acetyloxy)methyl]thio]]-1-methyl-4(1H)quinolinone ( 2 ) and 3-[(chloromethyl)thio]-1-methyl-4(1H)quinolinone ( 3 ) respectively. 3-(Methylsulfinyl)-4(1H)cinnolinone ( 4 ) gave the corresponding products when treated under similar conditions. Treatment of 8-methoxy-3-(methylsulfinyl)-4H-1-benzopyran-4-one ( 11 ) with acetic anhydride and thionyl chloride gave bis addition vinyl Pummerer products 2,3-bis(acetyloxy)-2,3-dihydro-8-methoxy-3-(methylthio)-4H-1-benzopyran-4-one ( 12 ) and 2,3-dichloro-2,3-dihydro-8-methoxy-3-(methylthio)-4H-1-benzopyran-4-one ( 13 ), respectively.  相似文献   

18.
Several chemical reactions were carried out on 3‐(benzothiazol‐2‐yl‐hydrazono)‐1,3‐dihydro‐indol‐2‐one ( 2 ). 3‐(Benzothiazol‐2‐yl‐hydrazono)‐1‐alkyl‐1,3‐dihydro‐indol‐2‐one 3a , 3b , 3c have been achieved. Reaction of compound 2 with ethyl bromoacetate in the presence of K2CO3 resulted the uncyclized product 4 . Reaction of compound 2 with benzoyl chloride afforded dibenzoyl derivative 5 . Compound 2 was smoothly acetylated by acetic anhydride in pyridine to give diacetyl derivative 6b . Moreover, when compound 4 reacted with methyl hydrazine, it yielded dihydrazide derivative 7 , whereas the hydrazinolysis of this compound with hydrazine hydrate gave the monohydrazide derivative 8 . {N‐(Benzothiazol‐2‐yl‐N′‐(3‐oxo‐3,4‐dihydro‐2H‐1,2,4‐triaza‐fluoren‐9‐ylidene)hydrazino]‐acetic acid ethyl ester ( 9 ) was prepared by ring closure of compound 8 by the action of glacial acetic acid. In addition, the reaction of 2‐hydrazinobenzothiazole ( 1 ) with d ‐glucose and d ‐arabinose in the presence of acetic acid yielded the hydrazones 10a , 10b , respectively. Acetylation of compound 10b gave compound 11b . On the other hand, compound 13 was obtained by the reaction of compound 1 with gama‐d ‐galactolactone ( 12 ). Acetylation of compound 13 with acetic anhydride in pyridin gave the corresponding N1‐acetyl‐N2‐(benzothiazolyl)‐2‐yl)‐2,3,4,5,6‐penta‐O‐acetyl‐d ‐galacto‐hydrazide ( 14 ). Better yields and shorter reaction times were achieved using ultrasound irradiation. The structural investigation of the new compounds is based on chemical and spectroscopic evidence. Some selected derivatives were studied for their antimicrobial and antiviral activities.  相似文献   

19.
Treatment of 2‐tosyloxybenzylidinethiosemicarbazone ( 2 ) with active halo compounds afforded thiazoles 3 – 5 . Moreover, reaction of compound 2 with acetic anhydride or dimethylformamide dimethylacetal gave N,N diacetyl 6 and dimethylamino derivatives 7 , respectively. Cyclization of thiazole derivatives 3 with some arylidenemalononitriles yielded thiazolo[2,3‐d]pyrans 8 – 12 . Multicomponent reaction of 2‐tosyloxybenzaldehyde ( 1 ) with urea, thiourea, or compound 2 and ethyl acetoacetate or acetylacetone afforded pyrimidines 13 – 14 . The structures of compounds were elucidated by elemental and spectral analyses.  相似文献   

20.
N-l-Diamantylmaleimide was synthesized by reaction of maleic anhydride with 1-aminodiamantane, followed by dehydration with acetic anhydride and sodium acetate. Poly(N-1-adamantylmaleimide) ( IIa ) and poly(N-l-diamantylmaleimide) ( IIb ) were polymerized using 2,2′-azobisisobutyronitrile (AIBN) as an initiator under different experimental conditions such as various initiator concentrations, solvents, polymerization temperatures, and polymerization times. Polymerizations of N-l-adamantylmaleimide in benzene at 60°C or in bulk gave polymers with molecular weights (2000–9500). The experimental results indicated that the propagation may be interrupted by steric hindrance of bulky and rigid substituents such as the adamantyl or diamantyl groups. In addition, the effect of chain transfer to monomer contributes to the relatively low activation energy. The glass transition temperatures of Ia and Ib were 204 and 216°C, respectively. The temperatures at 5% weight loss of the polymers IIa and IIb were above 412°C. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号