首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The skeletal muscle (SM) is the largest organ in the body and has tremendous regenerative power due to its myogenic stem cell population. Myostatin (MSTN), a protein produced by SM, is released into the bloodstream and is responsible for age-related reduced muscle fiber development. The objective of this study was to identify the natural compounds that inhibit MSTN with therapeutic potential for the management of age-related disorders, specifically muscle atrophy and sarcopenia. Sequential screening of 2000 natural compounds was performed, and dithymoquinone (DTQ) was found to inhibit MSTN with a binding free energy of −7.40 kcal/mol. Furthermore, the docking results showed that DTQ reduced the binding interaction between MSTN and its receptor, activin receptor type-2B (ActR2B). The global energy of MSTN-ActR2B was found to be reduced from −47.75 to −40.45 by DTQ. The stability of the DTQ–MSTN complex was subjected to a molecular dynamics analysis for up to 100 ns to check the stability of the complex using RMSD, RMSF, Rg, SASA, and H-bond number. The complex was found to be stable after 10 ns to the end of the simulation. These results suggest that DTQ blocks MSTN signaling through ActR2B and that it has potential use as a muscle growth-promoting agent during the aging process.  相似文献   

2.
Flavonols possess several beneficial bioactivities in vitro and in vivo. In this study, two flavonols galangin and quercetin with or without heat treatment (100 °C for 15–30 min) were assessed for their anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated rat intestinal epithelial (IEC-6) cells and whether the heat treatment caused activity changes. The flavonol dosages of 2.5–20 μmol/L had no cytotoxicity on the cells but could enhance cell viability (especially using 5 μmol/L flavonol dosage). The flavonols could decrease the production of prostaglandin E2 and three pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α, and simultaneously promote the production of two anti-inflammatory cytokines IL-10 and transforming growth factor-β. The Western-blot results verified that the flavonols could suppress the LPS-induced expression of TLR4 and phosphorylated IκBα and p65, while the molecular docking results also illustrated that the flavonols could bind with TLR4 and NF-κB to yield energy decreases of −(21.9–28.6) kJ/mol. Furthermore, an inhibitor BAY 11-7082 blocked the NF-κB signaling pathway by inhibiting the expression of phosphorylated IκBα/p65 and thus mediated the production of IL-6/IL-10 as the flavonols did, which confirmed the assessed anti-inflammatory effect of the flavonols. Consistently, galangin had higher anti-inflammatory activity than quercetin, while the heated flavonols (especially those with longer heat time) were less active than the unheated counterparts to exert these target anti-inflammatory effects. It is highlighted that the flavonols could antagonize the LPS-caused IEC-6 cells inflammation via suppressing TLR4/NF-κB activation, but heat treatment of the flavonols led to reduced anti-inflammatory efficacy.  相似文献   

3.
The α-D-glucopyranoside and its derivatives were as the cardinal investigation for developing an effective medication to treat the highest deadly white spot syndrome virus (WSSV) diseases in Shrimp. In our forthcoming work, both computational tools, such as molecular docking, quantum calculations, pharmaceutical kinetics, ADMET, and their molecular dynamics, as well as the experimental trial against WSSV, were executed to develop novel inhibitors. In the beginning, molecular docking was carried out to determine inhibitors of the four targeted proteins of WSSV (PDB ID: 2ED6, 2GJ2, 2GJI, and 2EDM), and to determine the binding energies and interactions of ligands and proteins after docking. The range of binding affinity was found to be between −5.40 and −7.00 kcal/mol for the protein 2DEM, from −5.10 to 6.90 kcal/mol for the protein 2GJ2, from −4.70 to −6.2 kcal/mol against 2GJI, and from −5.5 kcal/mol to −6.6 kcal/mol for the evolved protein 2ED6 whereas the L01 and L03 display the highest binding energy in the protein 2EDM. After that, the top-ranked compounds (L01, L02, L03, L04, and L05), based on their high binding energies, were tested for molecular dynamics (MD) simulations of 100 ns to verify the docking validation and stability of the docked complex by calculating the root mean square deviation (RMSD) and root mean square fluctuation (RMSF). The molecules with the highest binding energy were then picked and compared to the standard drugs that were been applied to fish experimentally to evaluate the treatment at various doses. Consequently, approximately 40–45% cure rate was obtained by applying the dose of oxytetracycline (OTC) 50% with vitamin C with the 10.0 g/kg feed for 10 days. These drugs (L09 to L12) have also been executed for molecular docking to compare with α-D-glucopyranoside and its derivatives (L01 to L08). Next, the evaluation of pharmacokinetic parameters, such as drug-likeness and Lipinski’s principles; absorption; distribution; metabolism; excretion; and toxicity (ADMET) factors, were employed gradually to further evaluate their suitability as inhibitors. It was discovered that all ligands (L01 to L12) were devoid of hepatotoxicity, and the AMES toxicity excluded L05. Additionally, all of the compounds convey a significant aqueous solubility and cannot permeate the blood-brain barrier. Moreover, quantum calculations based on density functional theory (DFT) provide the most solid evidence and testimony regarding their chemical stability, chemical reactivity, biological relevance, reactive nature and specific part of reactivity. The computational and virtual screenings for in silico study reveals that these chosen compounds (L01 to L08) have conducted the inhibitory effect to convey as a possible medication against the WSSV than existing drugs (L09, L10, L11 and L12) in the market. Next the drugs (L09, L10, L11 and L12) have been used in trials.  相似文献   

4.
5.
6.
c-Jun N-terminal kinase (JNK) plays a central role in stress signaling pathways implicated in important pathological processes, including rheumatoid arthritis and ischemia-reperfusion injury. Therefore, inhibition of JNK is of interest for molecular targeted therapy to treat various diseases. We synthesized 13 derivatives of our reported JNK inhibitor 11H-indeno[1,2-b]quinoxalin-11-one oxime and evaluated their binding to the three JNK isoforms and their biological effects. Eight compounds exhibited submicromolar binding affinity for at least one JNK isoform. Most of these compounds also inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) activation and interleukin-6 (IL-6) production in human monocytic THP1-Blue cells and human MonoMac-6 cells, respectively. Selected compounds (4f and 4m) also inhibited LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. We conclude that indenoquinoxaline-based oximes can serve as specific small-molecule modulators for mechanistic studies of JNKs, as well as potential leads for the development of anti-inflammatory drugs.  相似文献   

7.
The present study investigated the antidiabetic properties of the extracts and fractions from leaves and stem bark of M. glabra based on dipeptidyl peptidase-4 (DPP-4) and α-Amylase inhibitory activity assays. The chloroform extract of the leaves was found to be most active towards inhibition of DPP-4 and α-Amylase with IC50 of 169.40 μg/mL and 303.64 μg/mL, respectively. Bioassay-guided fractionation of the leaves’ chloroform extract revealed fraction 4 (CF4) as the most active fraction (DPP-4 IC50: 128.35 μg/mL; α-Amylase IC50: 170.19 μg/mL). LC-MS/MS investigation of CF4 led to the identification of trans-decursidinol (1), swermirin (2), methyl 3,4,5-trimethoxycinnamate (3), renifolin (4), 4′,5,6,7-tetramethoxy-flavone (5), isorhamnetin (6), quercetagetin-3,4′-dimethyl ether (7), 5,3′,4′-trihydroxy-6,7-dimethoxy-flavone (8), and 2-methoxy-5-acetoxy-fruranogermacr-1(10)-en-6-one (9) as the major components. The computational study suggested that (8) and (7) were the most potent DPP-4 and α-Amylase inhibitors based on their lower binding affinities and extensive interactions with critical amino acid residues of the respective enzymes. The binding affinity of (8) with DPP-4 (−8.1 kcal/mol) was comparable to that of sitagliptin (−8.6 kcal/mol) while the binding affinity of (7) with α-Amylase (−8.6 kcal/mol) was better than acarbose (−6.9 kcal/mol). These findings highlight the phytochemical profile and potential antidiabetic compounds from M. glabra that may work as an alternative treatment for diabetes.  相似文献   

8.
Coming into the second year of the pandemic, the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants continue to be a serious health hazard globally. A surge in the omicron wave, despite the discovery of the vaccines, has shifted the attention of research towards the discovery and use of bioactive compounds, being potential inhibitors of the viral structural proteins. The present study aimed at the green synthesis of zinc oxide (ZnO) nanoparticles with seed extracts of Nigella sativa and Pimpinella anisum—loaded nanostructured oil carriers (NLC)—using a mixture of olive and black seed essential oils. The synthesized ZnO NLC were extensively characterized. In addition, the constituent compounds in ZnO NLC were investigated as a potential inhibitor for the SARS-CoV-2 main protease (3CLpro or Mpro) where 27 bioactive constituents, along with ZnO in the nanostructure, were subjected to molecular docking studies. The resultant high-score compounds were further validated by molecular dynamics simulation. The study optimized the compounds dithymoquinone, δ-hederin, oleuropein, and zinc oxide with high docking energy scores (ranging from −7.9 to −9.9 kcal/mol). The RMSD and RMSF data that ensued also mirrored these results for the stability of proteins and ligands. RMSD and RMSF data showed no conformational change in the protein during the MD simulation. Histograms of every simulation trajectory explained the ligand properties and ligand–protein contacts. Nevertheless, further experimental investigations and validation of the selected candidates are imperative to take forward the applicability of the nanostructure as a potent inhibitor of COVID-19 (Coronavirus Disease 2019) for clinical trials.  相似文献   

9.
10.
Epoxy-α-lapachone (Lap) and Epoxymethyl-lawsone (Law) are oxiranes derived from Lapachol and have been shown to be promising drugs for Leishmaniases treatment. Although, it is known the action spectrum of both compounds affect the Leishmania spp. multiplication, there are gaps in the molecular binding details of target enzymes related to the parasite’s physiology. Molecular docking assays simulations were performed using DockThor server to predict the preferred orientation of both compounds to form stable complexes with key enzymes of metabolic pathway, electron transport chain, and lipids metabolism of Leishmania spp. This study showed the hit rates of both compounds interacting with lanosterol C-14 demethylase (−8.4 kcal/mol to −7.4 kcal/mol), cytochrome c (−10.2 kcal/mol to −8.8 kcal/mol), and glyceraldehyde-3-phosphate dehydrogenase (−8.5 kcal/mol to −7.5 kcal/mol) according to Leishmania spp. and assessed compounds. The set of molecular evidence reinforces the potential of both compounds as multi-target drugs for interrupt the network interactions between parasite enzymes, which can lead to a better efficacy of drugs for the treatment of leishmaniases.  相似文献   

11.
Chloranthus oldhamii Solms (CO) is a folk medicine for treating infection and arthritis pain but its pharmacological activity and bioactive compounds remain mostly uncharacterized. In this study, the anti-inflammatory compounds of C. oldhamii were identified using an LPS-stimulated, NF-κB-responsive RAW 264.7 macrophage reporter line. Three diterpenoid compounds, 3α-hydroxy-ent-abieta-8,11,13-triene (CO-9), 3α, 7β-dihydroxy-ent-abieta-8,11,13-triene (CO-10), and decandrin B (CO-15) were found to inhibit NF-κB activity at nontoxic concentrations. Moreover, CO-9 and CO-10 suppressed the expression of IL-6 and TNF-α in LPS-stimulated RAW 264.7 cells. The inhibitory effect of CO-9 on TNF-α and IL-6 expression was further demonstrated using LPS-treated bone marrow-derived macrophages. Furthermore, CO-9, CO-10, and CO-15 suppressed LPS-triggered COX-2 expression and downstream PGE2 production in RAW 264.7 cells. CO-9 and CO-10 also reduced LPS-triggered iNOS expression and nitrogen oxide production in RAW 264.7 cells. The anti-inflammatory mechanism of the most effective compound, CO-9, was further investigated. CO-9 attenuated LPS-induced NF-κB activation by reducing the phosphorylation of IKKα/β (Ser176/180), IκBα (Ser32), and p65 (Ser534). Conversely, CO-9 did not affect the LPS-induced activation of MAPK signaling pathways. In summary, this study revealed new anti-inflammatory diterpenoid compounds from C. oldhamii and demonstrated that the IKK-mediated NK-κB pathway is the major target of these compounds.  相似文献   

12.
Non-canonical nuclear factor kappa B (NF-κB) signaling pathway regulates many physiological and pathological processes, including liver homeostasis and diseases. Recent studies demonstrate that non-canonical NF-κB signaling pathway plays an essential role in hyperglycemia, non-alcoholic fatty liver disease, alcoholic liver disease, liver regeneration, liver injury, autoimmune liver disease, viral hepatitis, and hepatocellular carcinoma. Small-molecule inhibitors targeting to non-canonical NF-κB signaling pathway have been developed and shown promising results in the treatment of liver injuries. Here, the recent advances and future prospects in understanding the roles of the non-canonical NF-κB signaling pathways in the regulation of liver diseases are discussed.  相似文献   

13.
14.
The use of vaccinations and antiviral medications have gained popularity in the therapeutic management of avian influenza H7N9 virus lately. Antiviral medicines are more popular due to being readily available. The presence of the neuraminidase protein in the avian influenza H7N9 virus and its critical role in the cleavage of sialic acid have made it a target drug in the development of influenza virus drugs. Generally, the neuraminidase proteins have common conserved amino acid residues and any mutation that occurs around or within these conserved residues affects the susceptibility and replicability of the influenza H7N9 virus. Herein, we investigated the interatomic and intermolecular dynamic impacts of the experimentally reported E119V mutation on the oseltamivir resistance of the influenza H7N9 virus. We extensively employed molecular dynamic (MD) simulations and subsequent post-MD analyses to investigate the binding mechanisms of oseltamivir-neuraminidase wildtype and E119V mutant complexes. The results revealed that the oseltamivir-wildtype complex was more thermodynamically stable than the oseltamivir-E119V mutant complex. Oseltamivir exhibited a greater binding affinity for wildtype (−15.46 ± 0.23 kcal/mol) relative to the E119V mutant (−11.72 ± 0.21 kcal/mol). The decrease in binding affinity (−3.74 kcal/mol) was consistent with RMSD, RMSF, SASA, PCA, and hydrogen bonding profiles, confirming that the E119V mutation conferred lower conformational stability and weaker protein–ligand interactions. The findings of this oseltamivir-E119V mutation may further assist in the design of compounds to overcome E119V mutation in the treatment of influenza H7N9 virus patients.  相似文献   

15.
Cell adhesion to stromal support and the associated intracellular signaling are central to drug resistance, therefore blocking both has been effective in increasing drug sensitization in leukemia. The stromal Ser/Thr protein kinase C (PKC) has been found to be important for conferring protection to leukemic cells. We aimed at elucidating the intracellular signals connected to cell adhesion and to stromal PKC. We found that NF-κB and Akt were up-regulated in mesenchymal stem cells (MSC) after binding of B-cell acute lymphoblastic leukemia (B-ALL) cells. Nevertheless, Akt inhibition did not induce B-ALL cell detachment. In spite of a clear activation of the NF-κB signaling pathway after B-ALL cell binding (up-regulation NF-κB1/2, and down-regulation of the IKBε and IKBα inhibitors) and an important reduction in cell adhesion after NF-κB inhibition, sensitization to the drug treatment was not observed. This was opposite to the PKC inhibitors Enzastaurin and HKPS, a novel chimeric peptide inhibitor, that were able to increase sensitization to dexamethasone, methotrexate, and vincristine. PLCγ1, Erk1/2, and CREB appear to be related to PKC signaling and PKC effect on drug sensitization since they were contra-regulated by HKPS when compared to dexamethasone-treated cells. Additionally, PKC inhibition by HKPS, but not by Enzastaurin, in MSC reduced the activity of three ABC transporters in leukemic cells treated with dexamethasone, a new indirect mechanism to increase sensitization to drug treatment in B-ALL cells. Our results show the validity of targeting the functional characteristic acquired and modulated during cell-to-cell interactions occurring in the leukemic niche.  相似文献   

16.
COVID-19 is still a global pandemic that has not been stopped. Many traditional medicines have been demonstrated to be incredibly helpful for treating COVID-19 patients while fighting the disease worldwide. We introduced 10 bioactive compounds derived from traditional medicinal plants and assessed their potential for inhibiting viral spike protein (S-protein), Papain-like protease (PLpro), and RNA dependent RNA polymerase (RdRp) using molecular docking protocols where we simulate the inhibitors bound to target proteins in various poses and at different known binding sites using Autodock version 4.0 and Chimera 1.8.1 software. Results found that the chicoric acid, quinine, and withaferin A ligand strongly inhibited CoV-2 S -protein with a binding energy of −8.63, −7.85, and −7.85 kcal/mol, respectively. Our modeling work also suggested that curcumin, quinine, and demothoxycurcumin exhibited high binding affinity toward RdRp with a binding energy of −7.80, −7.80, and −7.64 kcal/mol, respectively. The other ligands, namely chicoric acid, demothoxycurcumin, and curcumin express high binding energy than the other tested ligands docked to PLpro with −7.62, −6.81, and −6.70 kcal/mol, respectively. Prediction of drug-likeness properties revealed that all tested ligands have no violations to Lipinski’s Rule of Five except cepharanthine, chicoric acid, and theaflavin. Regarding the pharmacokinetic behavior, all ligand predicted to have high GI-absorption except chicoric acid and theaflavin. At the same way chicoric acid, withaferin A, and withanolide D predicted to be substrate for multidrug resistance protein (P-gp substrate). Caffeic acid, cepharanthine, chicoric acid, withaferin A, and withanolide D also have no inhibitory effect on any cytochrome P450 enzymes. Promisingly, chicoric acid, quinine, curcumin, and demothoxycurcumin exhibited high binding affinity on SARS-CoV-2 target proteins and expressed good drug-likeness and pharmacokinetic properties. Further research is required to investigate the potential uses of these compounds in the treatment of SARS-CoV-2.  相似文献   

17.
Platelets play a critical role in arterial thrombosis. Rutaecarpine (RUT) was purified from Tetradium ruticarpum, a well-known Chinese medicine. This study examined the relative activity of RUT with NF-κB inhibitors in human platelets. BAY11-7082 (an inhibitor of IκB kinase [IKK]), Ro106-9920 (an inhibitor of proteasomes), and RUT concentration-dependently (1–6 μM) inhibited platelet aggregation and P-selectin expression. RUT was found to have a similar effect to that of BAY11-7082; however, it exhibits more effectiveness than Ro106-9920. RUT suppresses the NF-κB pathway as it inhibits IKK, IκBα, and p65 phosphorylation and reverses IκBα degradation in activated platelets. This study also investigated the role of p38 and NF-κB in cell signaling events and found that SB203580 (an inhibitor of p38) markedly reduced p38, IKK, and p65 phosphorylation and reversed IκBα degradation as well as p65 activation in a confocal microscope, whereas BAY11-7082 had no effects in p38 phosphorylation. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay shows that RUT and BAY11-7082 did not exhibit free radical scavenging activity. In the in vivo study, compared with BAY11-7082, RUT more effectively reduced mortality in adenosine diphosphate (ADP)-induced acute pulmonary thromboembolism without affecting the bleeding time. In conclusion, a distinctive pathway of p38-mediated NF-κB activation may involve RUT-mediated antiplatelet activation, and RUT could act as a strong prophylactic or therapeutic drug for cardiovascular diseases.  相似文献   

18.
19.
The wild-type SARS-CoV-2 has continuously evolved into several variants with increased transmissibility and virulence. The Delta variant which was initially identified in India created a devastating impact throughout the country during the second wave. While the efficacy of the existing vaccines against the latest SARS-CoV-2 variants remains unclear, extensive research is being carried out to develop potential antiviral drugs through approaches like in silico screening and drug-repurposing. This study aimed to conduct the docking-based virtual screening of 50 potential phytochemical compounds against a Spike glycoprotein of the wild-type and the Delta SARS-CoV-2 variant. Subsequently, molecular docking was performed for the five best compounds, such as Lupeol, Betulin, Hypericin, Corilagin, and Geraniin, along with synthetic controls. From the results obtained, it was evident that Lupeol exhibited a remarkable binding affinity towards the wild-type Spike protein (−8.54 kcal/mol), while Betulin showed significant binding interactions with the mutated Spike protein (−8.83 kcal/mol), respectively. The binding energy values of the selected plant compounds were slightly higher than that of the controls. Key hydrogen bonding and hydrophobic interactions of the resulting complexes were visualized, which explained their greater binding affinity against the target proteins—the Delta S protein of SARS-CoV-2, in particular. The lower RMSD, the RMSF values of the complexes and the ligands, Rg, H-bonds, and the binding free energies of the complexes together revealed the stability of the complexes and significant binding affinities of the ligands towards the target proteins. Our study suggests that Lupeol and Betulin could be considered as potential ligands for SARS-CoV-2 spike antagonists. Further experimental validations might provide new insights for the possible antiviral therapeutic interventions of the identified lead compounds and their analogs against COVID-19 infection.  相似文献   

20.
Endometritis is the inflammatory response of the endometrial lining of the uterus and is associated with low conception rates, early embryonic mortality, and prolonged inter-calving intervals, and thus poses huge economic losses to the dairy industry worldwide. Ginsenoside Rb1 (GnRb1) is a natural compound obtained from the roots of Panax ginseng, having several pharmacological and biological properties. However, the anti-inflammatory properties of GnRb1 in lipopolysaccharide (LPS)-challenged endometritis through the TLR4-mediated NF-κB signaling pathway has not yet been researched. This study was planned to evaluate the mechanisms of how GnRb1 rescues LPS-induced endometritis. In the present research, histopathological findings revealed that GnRb1 ameliorated LPS-triggered uterine injury. The ELISA and RT-qPCR assay findings indicated that GnRb1 suppressed the expression level of pro-inflammatory molecules (TNF-α, IL-1β and IL-6) and boosted the level of anti-inflammatory (IL-10) cytokine. Furthermore, the molecular study suggested that GnRb1 attenuated TLR4-mediated NF-κB signaling. The results demonstrated the therapeutic efficacy of GnRb1 in the mouse model of LPS-triggered endometritis via the inhibition of the TLR4-associated NF-κB pathway. Taken together, this study provides a baseline for the protective effect of GnRb1 to treat endometritis in both humans and animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号