首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过可逆加成-断裂链转移(RAFT)的聚合方法,合成了分别含有苯硼酸基元和葡萄糖基元的聚(N-异丙基丙烯酰胺)-b-聚(丙烯酰胺基苯硼酸)(PNIPAM-b-PAPBA)和聚(N-异丙基丙烯酰胺)-b-聚(丙烯酰葡萄糖胺)(PNIPAM-b-PAGA)二嵌段聚合物.由于苯硼酸和葡萄糖基元之间在弱碱性条件下(pH9.3)形成硼酸酯共价键,两种二嵌段聚合物的水溶液混合后能自发形成以PAPBA/PAGA络合物为核,PNIPAM为壳层的高分子复合物胶束.由于硼酸酯共价键在pH值和葡萄糖浓度改变时能可逆形成和断裂,以及胶束PNIPAM壳层的温敏性,所制备的基于苯硼酸/葡萄糖可逆共价键的高分子复合物胶束对pH、葡萄糖和温度具有多重响应性.  相似文献   

2.
以胱胺四酰肼为交联剂,将其与黄原胶在水溶液中进行酰胺化反应,通过"一步法"制备得到pH和还原刺激响应性纳米微凝胶;采用傅里叶红外光谱仪、核磁共振氢谱仪、动态激光光散射仪、扫描电镜和透射电镜对其结构和形貌进行了表征,研究了纳米微凝胶的性能及其药物控释效果。结果表明:该纳米微凝胶具有明显的pH和还原响应性。纳米微凝胶中含有游离的酰肼基团,可与阿霉素分子中的酮羰基反应形成pH敏感的酰腙键。胱胺四酰肼中的双硫键可在较高浓度的谷胱甘肽作用下还原,导致微凝胶交联结构被破坏,促使药物释放。该纳米微凝胶生物相容性良好,有望用作靶向释放抗癌药物载体。  相似文献   

3.
通过1,3-二碘甲基-2-硝基苯与双(2-甲基丙酸)三硫代碳酸酯的高效聚酯化反应合成了主链中含有邻硝基苄酯和三硫代碳酸酯基团的聚合物,以其作为大分子链转移剂,进行苯乙烯的可逆加成断裂链转移(RAFT)聚合,获得了多嵌段聚苯乙烯.大分子链转移剂和多嵌段聚苯乙烯的结构及分子量通过核磁氢谱(1H-NMR)和凝胶渗透色谱(GPC)进行了表征.考察了多嵌段聚苯乙烯溶液和固态的降解性能及热性能.实验结果表明,多嵌段聚苯乙烯不仅在紫外辐照条件下可发生光降解,而且也可通过胺解和水解反应进行降解.热重分析(TGA)和示差扫描量热(DSC)结果显示,邻硝基苄酯基团和三硫代碳酸酯基团的引入,对于多嵌段聚苯乙烯玻璃化转变温度和热稳定性并没有明显的影响.  相似文献   

4.
“黏附”是一种普遍存在的多尺度相互作用,其实质是界面处化学键、氢键或范德华力等的形成.近年来,在贻贝仿生的基础上将黏性因子邻苯二酚基团嵌入到动态硼酸酯聚合物中,成为了功能黏附性高分子的重要发展方向.本专论从分子黏附、微/纳表面黏附和宏观表面黏附3个尺度,介绍硼酸酯键管控邻苯二酚基团在高分子材料功能化方面的研究进展.分子黏附,主要讨论硼酸酯聚合物中邻苯二酚基团与分子或离子相互作用规律及其对材料形貌和刺激响应性能的调控;微/纳表面黏附,论述硼酸酯聚合物体系超分子驱动力和组装机制,介绍其在微/纳材料功能化改性方面的研究进展;宏观表面黏附,讨论硼酸酯键管控邻苯二酚基团与黏附性能调控的关联规律,介绍硼酸酯聚合物功能黏附材料在宏观组装、攀爬机器人领域的应用.最后,从新型硼酸酯聚合物设计、动态键精准管控和器件化应用的角度,对该领域未来前景和发展趋势做出了展望.  相似文献   

5.
研究了以双硫酯为链转移剂进行的均聚和嵌段共聚物的合成 .首先合成大分子链转移剂 ,得到分子量可控、多分散性系数较小的均聚物PMMA、PBMA、PEMA、PEA、PBA、PMA、PSt,多分散性系数一般小于 1 30 .在相同的条件下 ,甲基丙烯酸酯类的聚合速度最快 ,苯乙烯其次 ,丙烯酸酯类最慢 .用末端带有双硫酯基团的PSt、PBMA、PBA为链转移剂 ,加入多种第二单体聚合得到实测分子量与理论分子量接近 ,且多分散性系数较小的两嵌段聚合物 .在链转移剂和引发剂的比例为 3∶1~ 6∶1的范围内 ,聚苯乙烯同样可以作为第一嵌段得到和其它酯类单体的两嵌段聚合物 .1 H NMR方法证明了聚合物的末端带有双硫酯基团 .嵌段聚合时必须加入微量的自由基引发剂以形成大分子自由基 ,达到较好的控制聚合效果  相似文献   

6.
合成了不同链长的甲基丙烯酸酯、甲基丙烯酰胺及丙烯酸与4,4′-双(甲基丙烯酰胺基)偶氮苯交联共聚的功能凝胶.三维网络结构通过压缩弹性模量、有效交联密度及聚合物与溶剂间的相互作用参数进行了表征.主要研究了这类凝胶在pH2.2和pH7.4的缓冲溶液的平衡溶胀特性及其偶氮交联基团在体内的降解行为,并讨论了其降解机制.凝胶在胃部的性能稳定,既不发生溶胀,亦不发生降解;但在盲肠内偶氮交联基因可发生降解.其降解率与凝胶的平衡溶胀程度有一个很好的关联:交联程度、疏水基侧链的长度及含量对凝胶溶胀行为的影响结果与这些因素对偶氮交联基团体内降解的影响结果完全一致.通过调节这些因素不仅可以控制凝胶的溶胀程度,而且可以控制偶氮交联基团在体内的降解行为.  相似文献   

7.
首先以甲基丙烯酸乙酰乙酸乙二醇酯(AAEM)和丙烯酸正丁酯(BA)为单体,以偶氮二异丁腈为引发剂,通过共聚反应得到共聚物PAB_n;然后利用该共聚物分子链上的β-二酮基团与伯胺间的缩合反应接枝邻二羟基,制备了含有邻二羟基的丙烯酸酯共聚物PAB_n-2OH;最后通过PAB_n-2OH的邻二羟基与硼酸反应形成硼酯键交联共聚物PAB_n-2OH-B。通过拉伸和动态力学测试分析了PAB_n-2OH和PAB_n-2OH-B的力学性能及其影响因素。结果表明:邻二羟基的引入不仅可以通过共聚物之间的氢键增强膜的力学性能,还为硼酸水溶液进入聚合物网络提供了通道;PAB_n-2OH浸泡于硼酸水溶液中发生硼酯交联反应后其力学性能显著增强,硼发挥着类似于植物中矿物质的"矿化作用";硼酯在酸/碱条件下的可逆反应可用来调控和设计交联聚合物的形状记忆特性。  相似文献   

8.
合成了不同链长的甲基丙烯酸酯、甲基丙烯酰胺及丙烯酸与 4 ,4′ 双 (甲基丙烯酰胺基 )偶氮苯交联共聚的功能凝胶 .三维网络结构通过压缩弹性模量、有效交联密度及聚合物与溶剂间的相互作用参数进行了表征 .主要研究了这类凝胶在pH2 2和pH7 4的缓冲溶液的平衡溶胀特性及其偶氮交联基团在体内的降解行为 ,并讨论了其降解机制 .凝胶在胃部的性能稳定 ,既不发生溶胀 ,亦不发生降解 ;但在盲肠内偶氮交联基因可发生降解 .其降解率与凝胶的平衡溶胀程度有一个很好的关联 :交联程度、疏水基侧链的长度及含量对凝胶溶胀行为的影响结果与这些因素对偶氮交联基团体内降解的影响结果完全一致 .通过调节这些因素不仅可以控制凝胶的溶胀程度 ,而且可以控制偶氮交联基团在体内的降解行为 .  相似文献   

9.
报道了一种含有二硫键的聚L-氨基酸共价交联网络,制备了能对含巯基生物分子与蛋白酶产生响应的新型聚L-氨基酸水凝胶.通过二硫键将降冰片烯基团键合在聚(L-谷氨酸)侧链,所得到的聚合物与末端修饰四嗪基团的四臂聚乙二醇在水溶液中混合,通过降冰片烯与四嗪基团之间发生Diels-Alder反应形成分子间共价交联,获得了聚(L-谷氨酸)/聚乙二醇水凝胶.研究了水凝胶在含巯基生物活性分子谷胱甘肽(GSH)作用下的性质变化.结果表明,2种官能化聚合物混合后可快速形成稳定的水凝胶,其力学性质随聚合物浓度、2种聚合物比例和降冰片烯基团的取代度的改变而变化.体外降解实验结果表明,在GSH或弹性蛋白酶存在的条件下,水凝胶的降解速率显著增加.同时,经GSH处理的水凝胶机械强度也显著降低.大鼠体内实验表明,在交联点引入GSH响应性的二硫键会明显加速聚氨基酸水凝胶的体内降解.进一步体外细胞实验与组织学分析结果表明,所获得聚氨基酸/聚乙二醇水凝胶具有良好的体外细胞相容性和动物体内组织相容性.  相似文献   

10.
通过化学交联反应诱导胶束化以较高的效率制备了PMCC(聚合物的质量浓度高达50 g/L). 首先制备嵌段共聚物聚苯乙烯-b-聚丙烯酸(PS-b-PAA), 然后对PAA嵌段中的羧基实行酰氯化, 在酰氯化产物聚苯乙烯-b-聚丙烯酰氯(PS-b-PACl)的共同溶剂二氯甲烷中加入交联剂乙二醇交联PACl嵌段. 交联反应使得PACl嵌段聚集, 同时, PS嵌段的保护作用使得PACl嵌段的聚集在有限个分子链间发生, 从而生成以PS为壳, 以含有羧基官能团的聚丙烯酸酯交联网络为核的PMCC.  相似文献   

11.
以水溶性单体甲基丙烯酸-β-羟乙酯(HEMA)与大分子交联剂E-51双甲基丙烯酸酯(E-51-DMA)(质量比HEMA/E-51-DMA=90/10)为主要原料,分别引入了5种小分子交联剂:N,N′-亚甲基双丙烯酰胺(MBA)、二乙烯基苯(DVB)、双甲基丙烯酸乙二醇酯(EDMA)、1,1,1-三(丙烯酰氧甲基)丙烷(TAP)和2,2,2-三(丙烯酰氧甲基)乙醇(TAE),采用本体聚合方法合成了5个系列的聚合物水凝胶.研究了小分子交联剂的类型及用量对水凝胶溶胀性能、杨氏模量以及有效交联密度ve和聚合物-水相互作用参数χ的影响,并比较了不同交联剂的交联效率.结果表明,随着小分子交联剂用量的增大,水凝胶平衡含水量EWC逐渐降低,聚合物体积分数2逐渐增大,反映聚合物网络结构的有效交联密度ve以及热力学参数聚合物-水相互作用参数χ值也随之增大.通过理论交联密度和有效交联密度的线性拟合,得到所选用的5种小分子交联剂在E-51-DMA10/HEMA90水凝胶体系中的交联效率,其顺序为DVB>EDMA>TAE>MBA≈TAP.  相似文献   

12.
用流变学方法对部分水解聚丙烯酰胺(HPAM)苯酚甲醛间苯二酚交联体系的弱凝胶化过程进行了研究,通过对基团转化率和高分子交联转化率的分析,发现凝胶化过程在接近凝胶点时,处于反应动力学的初期,这使得交联点增加的动力学是比较简单的.通过在不同聚合物浓度和交联剂浓度并在地层温度和矿化度条件下线性粘弹性行为的研究,得到了交联体系凝胶化动力学过程的完整数据,发现聚合物浓度与交联剂浓度对凝胶点与凝胶强度的影响比较类似,反映出交联点增加的共同动力学特征.复数粘度在一个诱导期后,是以指数上升的,类似一个一级反应的特征.产生交联的临界聚合物浓度约为250mg L左右.并提出了剪切粘度数学模型,可以描述凝胶化过程中流变性质的变化.  相似文献   

13.
用自由基引发3-丙烯酰胺基苯硼酸(AAPBA)、N,N-二甲基丙烯酰胺(DMAA)和丙烯酰胺(AAm)共聚交联制得新型三嵌段水凝胶P(AAPBA-co-DMAA-co-AAm), 与传统的两嵌段聚合物相比, 该凝胶具有良好的糖敏感特性, 在质量浓度200 mg/dL以上有较高的糖响应特性, 这一数值接近糖尿病病人的血糖阈值, 其溶胀度达10倍以上, 同时糖响应时间缩短到2~3 h. 振荡实验结果表明, 所得凝胶对糖呈现出良好的刺激-响应特性.  相似文献   

14.
刺激响应性药物载体由于其优异的控释性能,在生物医药领域引发了广泛的关注并得到了极为快速的发展.硼酸酯键因构筑条件简单、生物相容性好以及能够响应生物体内pH、葡萄糖、三磷酸腺苷(ATP)等多种微环境变化的优势被广泛用于刺激响应性药物载体的构筑.基于硼酸酯键的药物载体类型有药物-聚合物偶联、聚合物胶束、线性-超支化聚合物和...  相似文献   

15.
首先制备端氨基聚(N-异丙基丙烯酰胺-co-聚乙二醇)大分子引发剂,再通过端氨基引发L-谷氨酸-γ-苄酯-N-羧酸酐开环聚合,制备了聚(N-异丙基丙烯酰胺-co-聚乙二醇)与聚(L-谷氨酸-γ-苄酯)的嵌段共聚物,将其中的γ-苄酯基团转化为酰肼基团后与阿霉素(DOX)共价结合,最后在水溶液中自组装成纳米胶束,制备了温度和pH值双重响应性纳米胶束。胶束外层由亲水性聚(N-异丙基丙烯酰胺-co-聚乙二醇)组成,具有温敏性,低临界溶液温度为38℃;胶束内层由聚(L-谷氨酸-γ-酰肼-阿霉素)组成。该胶束对于药物的释放具有温度和pH双重敏感性。  相似文献   

16.
α,α-二甲基-β-丙内酯(即PVL)的嵌段共聚近年来受到人们的重视。1979年G.Broze等发现只有α,β或γ位带有极性基团或双键的羧端基才可以进行嵌段共聚,否则只能引发均聚。但他们的实验都是以四正丁铵做为反离子的。我们改用其它季铵反离子发现可以改变嵌段效率,同时发现未嵌段的双羧戊酰端基的聚1,2-丙二醇己二酸酯(PPA)上带有微量的酸酐键,因而提出引发PVL时同时存在烷氧与酰氧开环两种引发机制,前者导致嵌段共聚,后者则导致均聚。本文进一步研究了不同季铵与冠醚络合钾反离子对嵌段效率的影响。  相似文献   

17.
探索了在路易斯酸存在下,三氟甲基酰腙与烯丙基三甲基硅烷或烯丙基硼酸频哪醇酯的烯丙基化反应,高产率地获得了一系列三氟甲基取代的高烯丙基酰肼类化合物.研究结果表明,在三氟甲基酰腙的烯丙基化反应中,烯丙基硼酸频哪醇酯比烯丙基三甲基硅烷的活性高.  相似文献   

18.
用邻位苄基溴与双胺进行门舒特金反应,合成了2种线性的季铵盐阳离子聚合物.其中,含有酚基酯键的阳离子聚合物,一旦进入细胞后,可以在细胞内的酯酶催化下快速水解,使得聚合物自降解断裂为不带电的非季铵盐小分子,从而快速释放DNA,最终达到提高转染效率的目的.通过对复合物纳米颗粒的粒径和电势测定,证明了这2种阳离子聚合物都能够有效地结合DNA形成表面带正电的复合物纳米颗粒.凝胶阻滞电泳实验表明,所合成的阳离子聚合物都能稳定地包裹DNA.而在酯酶条件下,含有酚基酯键的阳离子聚合物可以发生降解,使得纳米复合物释放出DNA.同时,含有酚基酯键的阳离子聚合物由于其独特的可降解性,相比于PEI,降低了细胞毒性.在体外细胞转染实验中,2种阳离子聚合物都有较好的转染效果.其中酯酶响应的载体在高N/P下依然表现出较高的转染效率,说明该阳离子载体能够在细胞内有效降解并释放出DNA.  相似文献   

19.
碳酸亚乙烯酯(VCA)分子中的反应性环碳酸酯基可于温和条件下与氨基发生反应形成稳定的氨基甲酸酯.利用这一性质,将含-NH2基团的酶分子直接以σ键的形式固定于含有环碳酸酯基的聚合物载体上.本文通过反相悬浮聚合,以液体石蜡为介质,VCA为反应性单体,甲基丙烯酸-β-羟乙酯(HEMA)及丙烯酸羟丙酯(HPA)为亲水性共聚单体,合成出一系列交联树脂聚合物.以此聚合物为载体对葡萄糖淀粉酶进行固载实验,表现出良好的固定化性能.同时,固定化酶的稳定性也有所提高.  相似文献   

20.
设计合成了一类新型结构的聚环氧乙烷(PEO)大分子链转移剂,调控3-丙烯酰胺基苯硼酸(AAPBA)的可逆加成断裂-链转移(RAFT)自由基聚合,合成得到3种PAAPBA链段长度不同的PAAPBA-bPEO-b-PAABPA3嵌段共聚物.研究了3种聚合物在生理pH值下的凝胶化行为,证明凝胶的形成与PAABPA的长度有关,当该链段较长时,由于PAABPA链段疏水性太强,不能形成稳定的水凝胶.详细研究了聚合物浓度、温度、葡萄糖浓度对凝胶流变行为的影响,证明共聚物浓度越高,形成的凝胶的强度更大,性质上更接近于固体,浓度较高条件下形成的凝胶的转变温度较高.凝胶表现出葡萄糖敏感性,当高葡萄糖存在时,随时间延长,凝胶会发生崩解直至最后溶解.凝胶亲水微区能包载蛋白质FITC-BSA,加入葡萄糖后,FITC-BSA的释放加快.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号