首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The bis‐guanidinium toxins are a collection of natural products that display nanomolar potency against select isoforms of eukaryotic voltage‐gated Na+ ion channels. We describe a synthetic strategy that enables access to four of these poisons, namely 11‐saxitoxinethanoic acid, C13‐acetoxy saxitoxin, decarbamoyl saxitoxin, and saxitoxin. Highlights of this work include an unusual Mislow–Evans rearrangement and a late‐stage Stille ketene acetal coupling. The IC50 value of 11‐saxitoxinethanoic acid was measured against rat NaV1.4, and found to be 17.0 nm , similar to those of the sulfated toxins gonyautoxin II and III.  相似文献   

2.
Introduction: Safranal, which endows saffron its unique aroma, causes vasodilatation and has a hypotensive effect in animal studies, but the mechanisms of these effects are unknown. In this study, we investigated the mechanisms of safranal vasodilation. Methods: Isolated rat endothelium-intact or -denuded aortic rings were precontracted with phenylephrine and then relaxed with safranal. To further assess the involvement of nitric oxide, prostaglandins, guanylate cyclase, and phospholipase A2 in safranal-induced vasodilation, aortic rings were preincubated with L-NAME, indomethacin, methylene blue, or quinacrine, respectively, then precontracted with phenylephrine, and safranal concentration–response curves were established. To explore the effects of safranal on Ca2+ influx, phenylephrine and CaCl2 concentration–response curves were established in the presence of safranal. Furthermore, the effect of safranal on aortic rings in the presence of ouabain, a Na+-K+ ATPase inhibitor, was studied to explore the contribution of Na+/Ca2+ exchanger to this vasodilation. Results: Safranal caused vasodilation in endothelium-intact and endothelium-denuded aortic rings. The vasodilation was not eliminated by pretreatment with L-NAME, indomethacin, methylene blue, or quinacrine, indicating the lack of a role for NO/cGMP. Safranal significantly inhibited the maximum contractions induced by phenylephrine, or by CaCl2 in Ca2+-free depolarizing buffer. Safranal also relaxed contractions induced by ouabain, but pretreatment with safranal totally abolished the development of ouabain contractions. Discussion/Conclusion: Inhibition of Na+-K+ ATPase by ouabain leads to the accumulation of Na+ intracellularly, forcing the Na+/Ca2+ exchanger to work in reverse mode, thus causing a contraction. Inhibition of the development of this contraction by preincubation with safranal indicates that safranal inhibited the Na+/Ca2+ exchanger. We conclude that safranal vasodilation is mediated by the inhibition of calcium influx from extracellular space through L-type Ca2+ channels and by the inhibition of the Na+/Ca2+ exchanger.  相似文献   

3.
Summary Vanadyl sulfate, VOSO4, was characterized as the mobile phase for the ion exchange separation of Li+, Na+, NH 4 + , and K+ using indirect photometric detection at 254 nm. Detection limits ranged from 0.2 ppm for Li+ to 1 ppm for K+. Indirect electrochemical detection of these separated cations by reduction of VO (II) to V3+ was compared to spectrophotometric detection. The potential of the vanadate species, HVO 4 2– , for the separation of F, Cl, and SO 4 2– , with indirect photometric detection was also demonstrated.  相似文献   

4.
The natural KcsA K+ channel, one of the best‐characterized biological pore structures, conducts K+ cations at high rates while excluding Na+ cations. The KcsA K+ channel is of primordial inspiration for the design of artificial channels. Important progress in improving conduction activity and K+/Na+ selectivity has been achieved with artificial ion‐channel systems. However, simple artificial systems exhibiting K+/Na+ selectivity and mimicking the biofunctions of the KcsA K+ channel are unknown. Herein, an artificial ion channel formed by H‐bonded stacks of squalyl crown ethers, in which K+ conduction is highly preferred to Na+ conduction, is reported. The K+‐channel behavior is interpreted as arising from discreet stacks of dimers resulting in the formation of oligomeric channels, in which transport of cations occurs through macrocycles mixed with dimeric carriers undergoing dynamic exchange within the bilayer membrane. The present highly K+‐selective macrocyclic channel can be regarded as a biomimetic alternative to the KcsA channel.  相似文献   

5.
It is believed that the biological effects of chelating agents such as crown ethers are largely related to their ability to form complexes with ions and/or to facilitate ion transport across membranes. Specific influences are rarely related. Here we present the evidence that even one of the simplest representatives of the crown ether super-family, 1,4,7,10,13,16-hexaoxacyclooctane (18-crown-6), is able to affect the activity of Na+, K+-ATPase directly. Using nonlinear regression fitting to kinetic data we have found that the crown ether diminishes the apparent Michaelis constant, K m , and the maximal rate of ATP hydrolysis, V m , acting as noncompetitive inhibitors. The apparent dissociation constants, K i , for the crown interaction with the free ATPase and with the enzyme-substrate complex were established to be of 77 ± 3 mM and 21 ± 2 mM, respectively. So 18-crown-6 possesses weak but “direct” pharmacological activity on Na+, K+-ATPase hinders the formation of enzyme–substrate complex and detains the enzyme in this state.  相似文献   

6.
A class of artificial K+ channels formed by pillararene‐cyclodextrin hybrid molecules have been designed and synthesized. These channels efficiently inserted into lipid bilayers and displayed high selectivity for K+ over Na+ in fluorescence and electrophysiological experiments. The cation transport selectivity of the artificial channels is tunable by varying the length of the linkers between pillararene and cyclodexrin. The shortest channel showed specific transmembrane transport preference for K+ over all alkali metal ions (selective sequence: K+ > Cs+ > Rb+ > Na+ > Li+), and is rarely observed for artificial K+ channels. The high selectivity of this artificial channel for K+ over Na+ ensures specific transmembrane translocation of K+, and generated stable membrane potential across lipid bilayers.  相似文献   

7.
Na superionic conductor (NASICON) structured cathode materials with robust structural stability and large Na+ diffusion channels have aroused great interest in sodium-ion batteries (SIBs). However, most of NASICON-type cathode materials exhibit redox reaction of no more than three electrons per formula, which strictly limits capacity and energy density. Herein, a series of NASICON-type Na3+xMnTi1−xVx(PO4)3 cathode materials are designed, which demonstrate not only a multi-electron reaction but also high voltage platform. With five redox couples from V5+/4+ (≈4.1 V), Mn4+/3+ (≈4.0 V), Mn3+/2+ (≈3.6 V), V4+/3+ (≈3.4 V), and Ti4+/3+ (≈2.1 V), the optimized material, Na3.2MnTi0.8V0.2(PO4)3, realizes a reversible 3.2-electron redox reaction, enabling a high discharge capacity (172.5 mAh g−1) and an ultrahigh energy density (527.2 Wh kg−1). This work sheds light on the rational construction of NASICON-type cathode materials with multi-electron redox reaction for high-energy SIBs.  相似文献   

8.
Potassium ion channels specifically transport K+ ions over Na+ ions across a cell membrane. A queue of four binding sites in the K+ channel pore plays significant roles during highly selective conduction. A kind of aromatic helical oligomer was synthesized that can selectively bind K+ over Na+. By aromatic stacking of helical oligomers, a type of artificial K+ channels with contiguous K+ binding sites was constructed. Such artificial channels exhibited exceptionally high K+/Na+ selectivity ratios during transmembrane ion conduction.  相似文献   

9.
Wang Y  Mao H  Wong LB 《Talanta》2011,85(1):694-700
We have developed a Na-quantum dot (QD) nanosensor for [Na+]i measurements. Using this Na-QD, we determined the dynamic physiological responses of [Na+]i in nonexcitable human HEK-293F cells and excitable primary rat cardiac myocytes by pharmacologically manipulating the membrane permeability to Na+, the Na-K-2Cl cotransporter, and the Na+/H+ antiporter. These data suggest that the mechanisms of [Na+]i homeostasis can now be elucidated with this novel Na-QD nanosensor. This could have a broad impact on Na+ channel drug discovery.  相似文献   

10.
The effects of La3+ on inward K+ channels at plasma membrane in vicia guard cells are investigated using the whole-cell patch-clamp recording mode. It is shown that La3+ on both sides of plasma membrane blocks inward K+ currents in a concentration-dependent manner, indicating that La3+ binding sites may exist on both sides of plasma membrane in guard cells in vicia. The dose response is fitted by the Michaelis-Menten relation characterized by an inhibitor constant K i of 2.56±0.25 μmol · L−1 (outside membrane) and (1.18±0.11)×10−15 mol · L−1 (inside membrane). Intracellular La3+ has much stronger inhibitory effect on inward K+ currents than extracellular La3+ does, suggesting there may exist stronger binding sites inside membrane than outside membrane. Since ion channel activities of guard cells directly affect plant stomatal movement and water status, our results imply that rare earth elements might have potential practical values in regulating plant water status and strengthening plant drought endurance.  相似文献   

11.
Lithium ions have been applied in the clinic in the treatment of psychiatric disorders. In this work, we report artificial supramolecular lithium channels composed of pore-containing small aromatic molecules. By adjusting the lumen size and coordination numbers, we found that one of the supramolecular channels developed shows unprecedented transmembrane transport of exogenous lithium ions with a Li+/Na+ selectivity ratio of 23.0, which is in the same level of that of natural Na+ channels. Furthermore, four coordination sites inside channels are found to be the basic requirement for ion transport function. Importantly, this artificial lithium channel displays very low transport of physiological Na+, K+, Mg2+, and Ca2+ ions. This highly selective Li+ channel may become an important tool for studying the physiological role of intracellular lithium ions, especially in the treatment of psychiatric disorders.  相似文献   

12.
Pressure effects on the two‐site jumping of sodium and potassium cations in a 2,5‐di‐tert‐butyl‐1,4‐benzoquinone ion pair have been studied using a high‐pressure EPR technique. The rate constants of the intramolecular and intermolecular migrations for Na+ and K+ were determined from an EPR spectral simulation. The migration rates were found to be accelerated by increasing the external pressure. Using the pressure dependence of the migration rates, we estimated the activation volumes of the intramolecular (ΔV1?) and intermolecular (ΔV2?) processes for the Na+ and K+ migrations: ΔV1? = ?5.3 cm3 mol?1 and ΔV2? = ?29 cm3 mol?1 for Na+, and ΔV1? = ?8.3 cm3 mol?1 and ΔV2? = ?0.85 cm3 mol?1 for K+. Based on the results, the mechanisms for the two‐site jumping of Na+ and K+ are discussed in terms of volume. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 397–401, 2001  相似文献   

13.
A novel series of C12-keto-type saxitoxin (STX) derivatives bearing an unusual nonhydrated form of the ketone at C12 has been synthesized, and their NaV-inhibitory activity has been evaluated in a cell-based assay as well as whole-cell patch-clamp recording. Among these compounds, 11-benzylidene STX ( 3 a ) showed potent inhibitory activity against neuroblastoma Neuro 2A in both cell-based and electrophysiological analyses, with EC50 and IC50 values of 8.5 and 30.7 nm , respectively. Interestingly, the compound showed potent inhibitory activity against tetrodotoxin-resistant subtype of NaV1.5, with an IC50 value of 94.1 nm . Derivatives 3 a – d and 3 f showed low recovery rates from NaV1.2 subtype (ca 45–79 %) compared to natural dcSTX ( 2 ), strongly suggesting an irreversible mode of interaction. We propose an interaction model for the C12-keto derivatives with NaV in which the enone moiety in the STX derivatives 3 works as Michael acceptor for the carboxylate of Asp1717.  相似文献   

14.
Effects of La3+ and Eu3+ on outward potassium channels (Kout+) in Vicia guard cells have been studied by patch clamping technique. Extracellular La3+ inhibited Kout+ currents with a half-inhibition concentration (IC50) of 81 μmol·L−1. Interestingly, intracellular La3+ activated Kout+ currents at a free concentration of 1.13 × 10−14 mol·L−1, and inhibited Kout+ currents at a free concentration of 5.86 × 10−14 mol·L−1. Extracellular Eu3+ also activated Kout+ currents at concentrations of 10 μmol·L−1 and 50 μmol·L−1, and inhibited Kout+ currents at concentrations of more than 1 mmol·L−1. The effects of La3+ and Eu3+ on Kout+ currents may contribute to regulation of the plant water status, which may be one of the mechanisms of the biological effect of rare earth elements.  相似文献   

15.
Unlike many other biologically relevant ions (Na+, K+, Ca2+, Cl, etc) and protons, whose cellular concentrations are closely regulated by highly selective channel proteins, Li+ ion is unusual in that its concentration is well tolerated over many orders of magnitude and that no lithium-specific channel proteins have so far been identified. While one naturally evolved primary pathway for Li+ ions to traverse across the cell membrane is through sodium channels by competing with Na+ ions, highly sought-after artificial lithium-transporting channels remain a major challenge to develop. Here we show that sulfur-containing organic nanotubes derived from intramolecularly H-bonded helically folded aromatic foldamers of 3.6 Å in hollow cavity diameter could facilitate highly selective and efficient transmembrane transport of Li+ ions, with high transport selectivity factors of 15.3 and 19.9 over Na+ and K+ ions, respectively.  相似文献   

16.
The screening function Φ [ = Vee(R) - Vee(∞)], a key quantity in the theory of isoelectronic molecules, has been given an accurate analytical representation for a large number of states of the species Na2, Na2+ Li2 and Li2+. The election-electron repulsion Vee at various internuclear distances has been obtained from high-quality MC SCF/SCF wavefunctions.  相似文献   

17.
The dibenzo[3n]crown-n were synthesised starting from bis[2-(o-hydroxyphenoxy)ethyl]ether obtained from bis[2-(o-formylphenoxy)ethyl]ether via Baeyer-Villiger oxidation in H2O2/CH3COOH in a good yield. The cyclic condensation ofbis[2-(o-hydroxyphenoxy)ethyl]etherwith tri- and tetraethylene glycol bisdichlorides andthe bisditosylate of pentaethylene glycol in DMF/Me2CO3 afforded the large cyclic ethers of dibenzo[21]crown-7, dibenzo[24]crown-8 and dibenzo[27]crown-9. The structures were analysed with IR, 1H NMR, 13C NMR and low-resolution mass spectroscopy methods. The Na+, K+, Rb+ and Cs+ cations' recognition of the molecules were conducted withsteady-state fluorescence spectroscopy. The 1:1 association constants, Ka, in acetonitrile were estimated. Dibenzo[21]crown-7 was the best both for K+ and Rb+ binding but showed too small an effect on Cs+. Dibenzo[24]crown-8 exhibited the binding power in the order of Rb+ > K+ > Na+ > Cs+. However, dibenzo[27]crown-9 displayed marked binding with only K+ but not with Rb+ or with Cs+ cations probably due to the heavy atom effect of fluorescence quenching.  相似文献   

18.
The dibenzo[3n]crown-n were synthesised from1,2-bis(o-hydroxyphenoxy)ethane obtained from 1,2-bis(o-formylphenoxy)ethane via Bayer-Willigeroxidations with H2O2/CH3COOH in good yields. The cyclic condensation of 1,2-bis(o-hydroxyphenoxy)ethanewith dichlorides, and ditosylates of polyethylene glycols in DMF/Me2CO3 gave the macrocyclesdibenzo[15]crown-5, dibenzo[18]crown-6, dibenzo[21]crown-7 anddibenzo[24]crown-8. The structures were identified using IR, mass, 1H and 13C NMR spectroscopy. Therecognition of the molecules for the cations, Li+, Na+, K+, Rb+ and Zn2+were conducted quantitatively with steady state fluorescencespectroscopy. The 1:1 association constants in acetonitrileshowed a good relation of the appropriate size of the macrocyclic ether towards the fitting cationradii. Namely, dibenzo[15]crown-5 was the best for Li+ binding and more than 100 times better thanNa+ and K+. Dibenzo[21]crown-7 was excellent for Rb+ binding while K+ is 100 timesless preferred. The largest crown ether studied, dibenzo[24]crown-8, exhibited the order of binding power,Rb+ > K+ > Na+. Zn2+ displayed, however, a marked binding with only dibenzo[18]crown-6.p>  相似文献   

19.
20.
Inter- and intramolecular nuclear magnetic quadrupole relaxation measurements have been used to study the system methanol (CH3OH)+ N,N-dimethylformamide (DMF)+NaI at 25°C. The dynamic behavior of the solvent molecules was investigated, throughout the composition range of the binary mixtures, by means of 14 N relaxation of DMF and 2 H of methanol-d 1 (CH 3 OD). The intermolecular relaxation of 23 Na+ in pure DMF was used to obtain information about the symmetry of the solvent electric dipole arrangement in the solvation sphere of the ion. The investigation of preferential solvation around Na+ in the binary mixtures was carried out by means of 23 Na+ relaxation measurements using, for the first time, both the CH 3 OH/CD 3 OD and the DMF/DMF-d 7 dynamic isotope effect. The results show that, throughout the composition range, there is preferential solvation by DMF. Furthermore, the use of the isotope effects of both components allowed for the first time a basic check of the reliability of the method since we obtained two independent sets of data for the composition of the Na+ solvation shell in the mixtures. The consistency of the two separate data sets demonstrates that the application of the dynamic isotope effect represents a powerful tool in preferential solvation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号