首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our research focused on the hypoglycemic capability and the possible mechanisms of extract and fractions from Polygoni Avicularis Herba (PAH) based on α-glucosidase, α-amylase inhibition assays, glucose uptake experiment, HPLC-MS analysis, and molecular docking experiment. In addition, DPPH, ABTS, and FRAP assays were used for determining the antioxidant capability. The results of total flavonoids and phenolics contents showed that ethyl acetate fraction (EAF) possessed the highest flavonoids and phenolics with values of 159.7 ± 2.5 mg rutin equivalents/g and 107.6 ± 2.0 mg galic acid equivalents/g, respectively. The results of in vitro hypoglycemic activity showed that all samples had effective α-glucosidase inhibition capacities, and EAF possessed the best inhibitory effect with IC50 value of 1.58 ± 0.24 μg/mL. In addition, n-butanol fraction (NBF) significantly promoted the glucose uptake rate of 3T3-L1 adipocytes. HPLC-MS analysis and molecular docking results proved the interactions between candidates and α-glucosidase. The results of antioxidation capacities showed that EAF possessed the best antioxidation abilities with DPPH, ABTS, and FRAP. In summary, the hypoglycemic activity of PAH might be related to the inhibition of α-glucosidase (EAF > PEF > NBF) and the promotion of glucose uptake in 3T3-L1 adipocytes (NBF). Simultaneously, the antioxidation capacity of PAH might be related to the abundant contents of flavonoids and other phenolics (EAF > PEF > NBF).  相似文献   

2.
Wendlandia tinctoria var. grandis (Roxb.) DC. (Family: Rubiaceae) is a semi-evergreen shrub distributed over tropical and subtropical Asia. The present research intended to explore the pharmacological potential of the stem extract of W. tinctoria, focusing on the antioxidant, hypoglycemic, and antidiarrheal properties, and to isolate various secondary metabolites as mediators of such activities. A total of eight phenolic compounds were isolated from the dichloromethane soluble fraction of the stem extract of this plant, which were characterized by electrospray ionization (ESI) mass spectrometric and 1H NMR spectroscopic data as liquiritigenin (1), naringenin (2), apigenin (3), kaempferol (4), glabridin (5), ferulic acid (6), 4-hydroxybenzoic acid (7), and 4-hydroxybenzaldehyde (8). The dichloromethane soluble fraction exhibited the highest phenolic content (289.87 ± 0.47 mg of GAE/g of dried extract) and the highest scavenging activity (IC50 = 18.83 ± 0.07 µg/mL) against the DPPH free radical. All of the isolated compounds, except 4-hydroxybenzaldehyde, exerted a higher antioxidant effect (IC50 = 6.20 ± 0.10 to 16.11 ± 0.02 μg/mL) than the standard butylated hydroxytoluene (BHT) (IC50 = 17.09 ± 0.01 μg/mL). Significant hypoglycemic and antidiarrheal activities of the methanolic crude extract at both doses (200 mg/kg bw and 400 mg/kg bw) were observed in a time-dependent manner. Furthermore, the computational modeling study supported the current in vitro and in vivo findings, and the isolated constituents had a higher or comparable binding affinity for glutathione reductase and urase oxidase enzymes, glucose transporter 3 (GLUT 3), and kappa-opioid receptor, inferring potential antioxidant, hypoglycemic, and antidiarrheal properties, respectively. This is the first report of all of these phenolic compounds being isolated from this plant species and even the first demonstration of the plant stem extract’s antioxidant, hypoglycemic, and antidiarrheal potentials. According to the current findings, the W. tinctoria stem could be a potential natural remedy for treating oxidative stress, hyperglycemia, and diarrhea. Nevertheless, further extensive investigation is crucial for thorough phytochemical screening and determining the precise mechanisms of action of the plant-derived bioactive metabolites against broad-spectrum molecular targets.  相似文献   

3.
Physalis angulata L. belongs to the family Solanaceae and is distributed throughout the tropical and subtropical regions. Physalis angulata leaf and fruit extracts were assessed for in vitro anticancer, antioxidant activity, and total phenolic and flavonoid content. The GC-MS technique investigated the chemical composition and structure of bioactive chemicals reported in extracts. The anticancer activity results revealed a decrease in the percentage of anticancer cells’ viability in a concentration- and time-dependent way. We also noticed morphological alterations in the cells, which we believe are related to Physalis angulata extracts. Under light microscopy, we observed that as the concentration of ethanolic extract (fruit and leaves) treated HeLa cells increased, the number of cells began to decrease.  相似文献   

4.
Phytochemical screening of nonpolar fractions from the methanol extract of the Bamboo shoot skin Phyllostachys heterocycla var. pubescens resulted in the isolation of a new sterol-glucoside-fatty acid derivative (6’-O-octadeca-8″,11″-dienoyl)-sitosterol-3-O-β-d-glucoside (1), together with six known compounds. The chemical structures of the pure isolated compounds were deduced based on different spectral data. The isolated compounds were assessed to determine their cytotoxic activity, and the results were confirmed by determining their apoptotic activity. Compound 1 was more cytotoxic against the MCF-7 cells (IC50 = 25.8 µM) compared to Fluorouracil (5-FU) (26.98 µM), and it significantly stimulated apoptotic breast cancer cell death with 32.6-fold (16.63% compared to 0.51 for the control) at pre-G1 and G2/M-phase cell cycle arrest and blocked the progression of MCF-7 cells. Additionally, RT-PCR results further confirmed the apoptotic activity of compound 1 by the upregulation of proapoptotic genes (P53; Bax; and caspases 3, 8, and 9) and downregulation of the antiapoptotic genes (BCL2). Finally, the identified compounds, especially 1, were found to have high binding affinity towards both tyrosine-specific protein kinase (TPK) and vascular endothelial growth factor receptor (VEGFR-2) through the molecular docking studies that highlight its mode of action.  相似文献   

5.
Decoctions (leaves and roots) of Bruguiera gymnorhiza (L.) Lam. are traditionally used against diabetes in many countries, including Mauritius. This study endeavoured to evaluate the inhibitory potential of leaves, roots, twigs and fruits extracts (decoction and maceration) of B. gymnorhiza against key enzymes relevant to diabetes. Considering complications related to diabetes, other clinical enzymes, namely, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, elastase and pancreatic lipase, were used. Identification of compounds was carried out using ultra-high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS). Antioxidant capacities were assessed using DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, metal chelating. The relationship between mode of extraction, plant parts and biological activities was determined using multivariate analysis. Macerated fruits, rich in phytochemicals (phenolic, flavanol, tannin, and triterpenoid), exhibited substantially high antioxidant capacities related to radical scavenging (DPPH: 547.75 ± 10.99 and ABTS: 439.59 ± 19.13 mg TE/g, respectively) and reducing potential (CUPRAC: 956.04 ± 11.90 and FRAP: 577.26 ± 4.55 mg TE/g, respectively). Additionally, the same extract significantly depressed AChE and BChE (3.75 ± 0.03 and 2.19 ± 0.13 mg GALAE/g, respectively), tyrosinase (147.01 ± 0.78 mg KAE/g), elastase (3.14 ± 0.08 mg OE/g) and amylase (1.22 ± 0.01 mmol ACAE/g) enzymatic activities. Phytochemical results confirmed the presence of 119 compounds in all maceration and 163 compounds in all decoction samples. The screening also revealed important compounds in the extracts, namely, quinic acid, brugierol, bruguierol A, epigallocatechin, chlorogenic acid, to name a few. Multivariate analysis reported that the plant parts of B. gymnorhiza greatly influenced the observed biological activities in contrast to the types of extraction methods employed. Docking calculations have supported the findings of the experimental part through the high binding affinity and strong interactions of some compounds against tyrosinase, AChE, BChE and elastase enzymes. The decocted root and leaf of B. gymnorhiza showed low to moderate antidiabetic activity, thereby partially supporting its traditional uses in the management of diabetes. However, the fruit, the most active organ, can be used as a diet supplement to reduce the risk of diabetes complications after evaluating its cytotoxic effects.  相似文献   

6.
The aim of this study was to investigate the effects of microwave ultrasonic-assisted extraction (MUAE) on the content, structure, and biological functions of Brassica rapa L. polysaccharide (BRP). Response surface methodology (RSM) was used to optimize the parameters of MUAE, and it obtained a polysaccharide with yield of 21.802%. Then, a neutral polysaccharide named BRP-1-1 with a molecular weight of 31.378 kDa was isolated and purified from BRP using DEAE-650 M and Sephadex G-100. The structures of the BRP-1-1 were elucidated through a combination of FT-IR, GC-MS, NMR, and methylation analysis. The results showed that BRP-1 consisted of mannose (Man) and glucose (Glu) in a molar ratio of 7.62:1. The backbone of BRP-1-1 mainly consisted of →6)-α-D-Glup-(1→4-β-D-Glup-(1→2)-α-D-Manp-(1→2)-α-D-Glup-(1→, the branch was [T-α-D-Manp-(1]n→. BRP-1-1 intervention significantly inhibited α-glucosidase activity; an inhibition rate of 44.623% was achieved at a concentration of 0.5 mg/mL. The results of the in vitro biological activity showed that BRP-1-1 has good antioxidant and hypoglycemic activity, suggesting that BRP-1-1 could be developed as a functional medicine.  相似文献   

7.
Syringa vulgaris L. (common lilac) is one of the most popular ornamental species, but also a promising not comprehensively studied source of bioactive compounds with important therapeutic potential. Our study was designed to characterize the chemical composition and to assess the antioxidant and cytotoxic properties of ethanolic extracts obtained from S. vulgaris L. flowers, leaves, bark, and fruit. The chemical profile of the ethanolic extracts was investigated using chromatographic (HPLC-DAD-ESI+, GC-MS) and spectral (UV-Vis, FT-IR) methods, while the protective effect against free radicals was evaluated in vitro by different chemical assays (DPPH, FRAP, CUPRAC). The cytotoxic activity was tested on two tumoral cell lines, HeLa, B16F10, using the MTT assay. Significant amounts of free or glycosylated chemical components belonging to various therapeutically important structural classes, such as phenyl-propanoids (syringin, acteoside, echinacoside), flavonoids (quercetin, kaempferol derivatives) and secoiridoids (secologanoside, oleuropein, 10-hydroxy oleuropein, demethyloleuropein, syringalactone A, nuzhenide, lingstroside) were obtained for the flowers, leaves and bark extracts, respectively. Furthermore, MTT tests pointed out a significant cytotoxic potential expressed in a non-dose-dependent manner toward the tumoral lines. The performed methods underlined that S. vulgaris extracts, in particular belonging to flowers and leaves, represent valuable sources of compounds with antioxidant and antitumoral potential.  相似文献   

8.
Growing data suggest that Aspergillus niger, an endophytic fungus, is a rich source of natural compounds with a wide range of biological properties. This study aimed to examine the antimicrobial and antibiofilm capabilities of the Phragmites australis-derived endophyte against a set of pathogenic bacteria and fungi. The endophytic fungus Aspergillus sp. AP5 was isolated from the leaves of P. australis. The chemical profile of the fungal crude extract was identified by spectroscopic analysis using LC-HRESIMS. The fungal-derived extract was evaluated for its antimicrobial activity towards a set of pathogenic bacterial and fungal strains including Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella sp., Candida albicans, and Aspergillus niger. Moreover, antibiofilm activity toward four resistant biofilm-forming bacteria was also evaluated. Additionally, a neural-networking pharmacophore-based visual screening predicted the most probable bioactive compounds in the obtained extract. The AP5-EtOAc extract was found to have potent antibacterial activities against S. aureus, E. coli, and Klebsiella sp., while it exhibited low antibacterial activity toward P. Vulgaris and P. aeruginosa and displayed anticandidal activity. The AP5-EtOAc extract had significant antibiofilm activity in S. aureus, followed by P. aeruginosa. The active metabolites’ antifungal and/or antibacterial activities may be due to targeting the fungal CYP 51 and/or the bacterial Gyr-B.  相似文献   

9.
Centaurea pichleri subsp. pichleri, Conyza canadensis, and Jasminum fruticans are traditionally used plants grown in Turkey. Methanol extracts were obtained from these plants and pharmacological activity studies and phytochemical analyses were carried out. To evaluate the phytochemical composition, spectrophotometric and chromatographic techniques were used. The extracts were evaluated for antioxidant activity by DPPH, ABTS●+ radical scavenging, and FRAP assays. The cytotoxic effects of the extracts were investigated on DU145 prostate cancer and A549 lung cancer cell lines. The anti-inflammatory effects of extracts were investigated on the NO amount, TNF-α, IFN-γ, and PGE 2 levels in lipopolysaccharide-stimulated Raw 264.7 cells. The richest extract in terms of phenolic compounds (98.19 ± 1.64 mgGAE/gextract) and total flavonoids (21.85 ± 0.64 mgCA/gextract) was identified as C. pichleri subsp. pichleri methanol extract. According to antioxidant activity determinations, the C. pichleri subsp. pichleri extract was found to be the most active extract. Finally, the C. pichleri subsp. pichleri methanol extract was revealed to be the most effective inhibitor of viability in the cytotoxic activity investigation, and the extract with the best anti-inflammatory action. The findings point to C. pichleri subsp. pichleri as a promising source of bioactive compounds in the transition from natural sources to industrial uses, such as new medications, cosmeceuticals, and nutraceuticals.  相似文献   

10.
The aim of this study was to investigate the chemical composition, antioxidant and enzyme inhibitory activities of methanol (MeOH) extracts from Onosma bourgaei (Boiss.) and O. trachytricha (Boiss.). In addition, the interactions between phytochemicals found in extracts in high amounts and the target enzymes in question were revealed at the molecular scale by performing in silico molecular docking simulations. While the total amount of flavonoid compounds was higher in O. bourgaei, O. trachytricha was richer in phenolics. Chromatographic analysis showed that the major compounds of the extracts were luteolin 7-glucoside, apigenin 7-glucoside and rosmarinic acid. With the exception of the ferrous ion chelating assay, O. trachytricha exhibited higher antioxidant activity than O. bourgaei. O. bourgaei exhibited also slightly higher activity on digestive enzymes. The inhibitory activities of the Onosma species on tyrosinase were almost equal. In addition, the inhibitory activities of the extracts on acetylcholinesterase (AChE) were stronger than the activity on butyrylcholinesterase (BChE). Molecular docking simulations revealed that luteolin 7-glucoside and apigenin 7-glucoside have particularly strong binding affinities against ChEs, tyrosinase, α-amylase and α-glucosidase when compared with co-crystallized inhibitors. Therefore, it was concluded that the compounds in question could act as effective inhibitors on cholinesterases, tyrosinase and digestive enzymes.  相似文献   

11.
The present work was designed to study the chemical composition and the antioxidant and antimicrobial properties of fruits (SFr) and leaf (SF) extracts from Solanum elaeagnifolium var. obtusifolium (Dunal) Dunal (S. elaeagnifolium). The chemical composition was determined using HPLC-DAD analysis. Colorimetric methods were used to determine polyphenols and flavonoids. Antioxidant capacity was assessed with DPPH, TAC, and FRAP assays. Antimicrobial activity was assessed using disk diffusion and microdilution assays against two Gram (+) bacteria (Staphylococcus aureus ATCC-6633 and Bacillus subtilis DSM-6333) and two Gram (-) bacteria (Escherichia coli K-12 and Proteus mirabilis ATCC-29906), while the antifungal effect was tested vs. Candida albicans ATCC-1023. By use of in silico studies, the antioxidant and antimicrobial properties of the studied extracts were also investigated. HPLC analysis showed that both fruits and leaf extracts from S. elaeagnifolium were rich in luteolin, quercetin, gallic acid, and naringenin. Both SFr and SF generated good antioxidant activity, with IC50 values of 35.15 ± 6.09 μg/mL and 132.46 ± 11.73 μg/mL, respectively. The EC50 of SFr and SF was 35.15 ± 6.09 μg/mL and 132.46 ± 11.73 μg/mL, respectively. SFr and SF also showed a good total antioxidant capacity of 939.66 ± 5.01 μg AAE/and 890.1 ± 7.76 μg AAE/g, respectively. SFr had important antibacterial activity vs. all tested strains—most notably B. subtilis DSM-6333 and E. coli, with MICs values of 2.5 ± 0.00 mg/mL and 2.50 ± 0.00 mg/mL, respectively. SFr demonstrated potent antifungal activity against C. albicans, with an inhibition diameter of 9.00 ± 0.50 mm and an MIC of 0.31 ± 0.00 mg/mL. The in silico approach showed that all compounds detected in SFr and SF had high activity (between −5.368 and 8.416 kcal/mol) against the receptors studied, including NADPH oxidase, human acetylcholinesterase, and beta-ketoacyl-[acyl carrier protein] synthase.  相似文献   

12.
A series of new macrocyclic binuclear copper(II) complexes of the type [Cu2L1–5(ClO4)](ClO4) ( 1 – 5 ) were synthesized by template condensation between precursor compounds 2,6‐bis(4‐aminoethylpiperazin‐1‐ylmethyl)‐4‐substituted phenols and 2,6‐diformyl‐4‐substituted phenols. The synthesized precursors and complexes were characterized using regular physicochemical techniques. The rate constant values obtained for the hydrolysis of 4‐nitrophenylphosphate were in the range 1.83 × 10−2–4.19 × 102 min−1. Antioxidant studies against 2,2′‐diphenyl‐1‐picrylhydrazyl revealed the antioxidant potency of the synthesized complexes. Binding studies of the complexes with calf thymus DNA were conducted using electronic, viscometric and voltammetric techniques, and the obtained results suggested a non‐covalent groove mode of binding. The oxidative cleavage of pBR322 DNA in the presence of co‐reactant H2O2 and radical scavengers showed single strand scission and involvement of H2O2 radical in the cleavage process. Molecular docking studies were performed to insert complexes into the crystal structures of 1BNA and VEGFR kinase at active sites to determine the possible binding mode and predominant binding interactions. In vitro cytotoxicity of the complexes was tested against human epidermoid carcinoma cells (A431) by MTT assay, which revealed the effective anticancer activity of the complexes. Live cell and fluorescent imaging of A431 cells showed that the complexes induce cell death through apoptosis.  相似文献   

13.
Ethanol extract (EE) and fractions obtained from the ripe fruits of Solanum lycocarpum were examined in order to determine their phenolic composition, antioxidant capacity, antibacterial activities and cytotoxic potential. High-performance liquid chromatography coupled with DAD analysis indicated that caffeic and chlorogenic acids were the main phenolic compounds present in the EE, dichloromethane (DCM) and ethyl acetate (Ac) fractions. The antioxidant activity assessed by the scavenging ability on 1,1-diphenyl-2-picrylhydrazyl radical was significantly more pronounced for DCM and Ac fractions than that of the commercial antioxidant 2,6-di-tert-butyl-4-methylphenol (BHT). EE and fractions exhibited selective antibacterial activity against Gram-positive bacteria, especially the hexane (Hex) and DCM fractions. EE and fractions exhibited low toxicity towards the LLC-MK2 cell line, especially the Hex, DCM and Ac fractions. This work provides the knowledge of phenolic composition in the extract and fractions from the ripe fruits of S. lycocarpum and their antioxidant, antibacterial and cytotoxic activities.  相似文献   

14.
Clinacanthus nutans is known to be an anticancer and antiviral agent, and Strobilanthes crispus has proven to be an antidiuretic and antidiabetic agent. However, there is a high possibility that these plants possess multiple beneficial properties, such as antimicrobial and wound healing properties. This study aims to assess the wound healing, antioxidant, and antimicrobial properties of Clinacanthus nutans and Strobilanthes crispus. The Clinacanthus nutans and Strobilanthes crispus leaves were dried, ground, and extracted with ethanol, acetone, and chloroform through cold maceration. In a modified scratch assay with co-incubation of skin fibroblast and Methicillin-resistant Staphylococcus aureus, Clinacanthus nutans and Strobilanthes crispus extracts were assessed for their wound healing potential, and the antimicrobial activities of Clinacanthus nutans and Strobilanthes crispus extracts were performed on a panel of Gram-positive and Gram-negative bacteria on Mueller–Hinton agar based on a disc diffusion assay. To assess for antioxidant potential, 2,2-diphenyl-1-picrylhydrazyl (DPPH), total phenolic and total flavonoid assays were conducted. In the modified scratch assay, Clinacanthus nutans extracts aided in the wound healing activity while in the presence of MRSA, and Strobilanthes crispus extracts were superior in antimicrobial and wound healing activities. In addition, Strobilanthes crispus extracts were superior to Clinacanthus nutans extracts against Pseudomonas aeruginosa on Mueller–Hinton agar. Acetone-extracted Clinacanthus nutans contained the highest level of antioxidant in comparison with other Clinacanthus nutans extracts.  相似文献   

15.
In the current study, a series of new (2S,3S)-2-(4-isopropylbenzyl)-2-methyl-4-nitro-3-phenylbutanals (FM1-6) with their corresponding carboxylic acid analogues (FM7-12) has been synthesized. Initially, the aldehydic derivatives were isolated in the diastereomeric form, and the structures were confirmed with NMR, MS and elemental analysis. Based on the encouraging results in in vitro COX 1/2, 5-LOX and antioxidant assays, we oxidized the compounds and obtained the pure single (major) diastereomer for activities. Among all the compounds, FM4, FM10 and FM12 were the leading compounds based on their potent IC50 values. The IC50 values of compounds FM4, FM10 and FM12 were 0.74, 0.69 and 0.18 µM, respectively, in COX-2 assay. Similarly, the IC50 values of these three compounds were also dominant in COX-1 assay. In 5-LOX assay, the majority of our compounds were potent inhibitors of the enzyme. Based on the potency and safety profiles, FM10 and FM12 were subjected to the in vivo experiments. The compounds FM10 and FM12 were observed with encouraging results in in vivo analgesic and anti-inflammatory models. The molecular docking studies of the selected compounds show binding interactions in the minimized pocked of the target proteins. It is obvious from the overall results that FM10 and FM12 are potent analgesic and anti-inflammatory agents.  相似文献   

16.
The essential oil (EO) from the aerial parts of Leontopodium leontopodioides (Willd.) Beauverd was obtained by hydrodistillation and analysed by GC–FID and GC–MS. Sixty-five compounds were identified which represent 96.2% of the total composition of the EO. The major components of the EO were palmitic acid (11.6%), n-pentadecanal (5.7%), linalool (3.8%), β-ionone (3.3%), hexahydrofarnesyl acetone (3.2%), bisabolone (3.2%) and β-caryophyllene (3.2%). The EO exhibited an excellent antibacterial activity against Staphylococcus aureus and Bacillus subtilis according to the MIC values tested by micro-dilution method. It also exhibited a significant cytotoxicity against HepG2 and MCF-7 cell lines with the IC50 values of 67.44 and 70.49 μg/mL according to the MTT assay. However, the antioxidant activity test revealed that the EO exhibited a weak DPPH radical-scavenging activity. In conclusion, the EO of L. leontopodioides could be regarded as a bioactive natural product and deserves further study for its potential therapeutic effects.  相似文献   

17.
Traditionally, Cymbopogon citratus is used to treat a variety of ailments, including cough, indigestion, fever, and diabetes. The previous chemical and bioactive research on C. citratus mainly focused on its volatile oil. In this study, 20 non-volatile known compounds were isolated from the dried aerial part of C. citratus, and their structures were elucidated by MS, NMR spectroscopy, and comparison with the published spectroscopic data. Among them, 16 compounds were reported for the first time from this plant. The screening results for antioxidant and α-glucosidase inhibitory activities indicated that compounds caffeic acid (5), 1-O-p-coumaroyl-3-O-caffeoylglycerol (8), 1,3-O-dicaffeoylglycerol (9) and luteolin-7-O-β-D-glucopyranoside (12) had potent antioxidant capacities, with IC50 values from 7.28 to 14.81 μM, 1.70 to 2.15 mol Trolox/mol and 1.31 to 2.42 mol Trolox/mol for DPPH, ABTS, and FRAP, respectively. Meanwhile, compounds 8 and 9 also exhibited significant inhibitory activities against α-glucosidase, with IC50 values of 11.45 ± 1.82 μM and 5.46 ± 0.25 μM, respectively, which were reported for the first time for their α-glucosidase inhibitory activities. The molecular docking result provided a molecular comprehension of the interaction between compounds (8 and 9) and α-glucosidase. The significant antioxidant and α-glucosidase inhibitory activities of compounds 8 and 9 suggested that they could be developed into antidiabetic drugs because of their potential regulatory roles on oxidative stress and digestive enzyme.  相似文献   

18.
Warionia saharae Benth. & Coss. (Asteraceae) is an endemic species of North Africa naturally grown in the southwest of the Algerian Sahara. In the present study, this species’ hydromethanolic leaf extract was investigated for its phenolic profile characterized by ultra-high-performance liquid chromatography coupled with a diode array detector and an electrospray mass spectrometer (UHPLC-DAD-ESI/MS). Additionally, the chemical composition of W. saharae was analyzed by gas chromatography–mass spectrometry, and its antioxidant potential was assessed through five in vitro tests: DPPH scavenging activity, ABTS●+ scavenging assay, galvinoxyl scavenging activity, ferric reducing power (FRP), and cupric reducing antioxidant capacity. The UHPLC-DAD-ESI/MS analysis allowed the detection and quantification of 22 compounds, with taxifolin as the dominant compound. The GC–MS analysis allowed the identification of 37 compounds, and the antioxidant activity data indicate that W. saharae extract has a very high capacity to capture radicals due to its richness in compounds with antioxidant capacity. The extract also showed potent α-glucosidase inhibition as well as a good anti-inflammatory activity. However, weak anti-α-amylase and anticholinesterase activities were recorded. Moreover, an in silico docking study was performed to highlight possible interactions between three significant compounds identified in W. saharae extract and α-glucosidase enzyme.  相似文献   

19.
20.
In this work, the extraction procedure of a natural pigment from the flower of Ceiba speciosa (A. St.-Hil.) was optimized by response surface methodology. It is the first time that the extraction of the flower pigment of C. speciosa (FPCS) has been reported, along with an evaluation of its stability and biological activity under various conditions, and an exploration of its potential use as a food additive and in medicine. Specifically, the effects of ethanol concentration, solid–liquid ratio, temperature and time on the extraction rate of FPCS were determined using a Box–Behnken design. The optimum extraction conditions for FPCS were 75% ethanol with a solid–liquid ratio of 1:75 mg/mL) at 66 °C for 39 min. The purification of FPCS using different macroporous resins showed that D101 performed best when the initial mass concentration of the injection solution was 1.50 mg/mL, resulting in a three-fold increase in color value. The yield of dry flowers was 9.75% of fresh petals and the FPCS extraction efficiency was 43.2%. The effects of light, solubility, pH, temperature, sweeteners, edible acids, redox agents, preservatives and metal ions on FPCS were also investigated. Furthermore, the characteristics of FPCS were determined by spectrophotometry at a specific wavelength using the Lambert–Beer law to correlate the mass of FPCS with its absorbance value. An acute toxicological test performed according to Horne’s method showed that FPCS is a non-toxic extract and thus may be used as a food additive or in other ingestible forms. Finally, western blotting showed that FPCS prevents lipopolysaccharide-induced hippocampal oxidative stress in mice. The study suggests that FPCS may function as an antioxidant with applications in the food, cosmetics and polymer industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号