首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rates of transport of uridine and thymidine, estimated with a rapid sampling technique, did not change with culture age. Inhibition of cellular RNA and protein synthesis for periods up to 6 h, did not lead to a loss of nucleoside transport activity. Mild treatment of cell suspensions with trypsin or neuraminidase had no effect on the kinetics of thymidine transport. Thus we conclude, contrary to previous reports, that nucleoside transporters are metabolically stable and that the decreases in nucleoside uptake rates observed with decreased protein synthesis reflect loss of nucleoside kinase activities. These kinases (which have narrow substrate specificity) rather than the membrane-associated, transport apparatus (which has broad substrate specificity) are the most likely sites for regulation of nucleoside uptake.  相似文献   

2.
The asymmetric synthesis of 1,3-oxathiolan-5-one derivatives through an enzyme-catalyzed, dynamic covalent kinetic resolution strategy is presented. Dynamic hemithioacetal formation combined with intramolecular, lipase-catalyzed lactonization resulted in good conversions with moderate to good enantiomeric excess (ee) for the final products. The process was evaluated for different lipase preparations, solvents, bases, and reaction temperatures, where lipase B from Candida antarctica (CAL-B) proved most efficient. The substrate scope was furthermore explored for a range of aldehyde structures, together with the potential access to nucleoside analog inhibitor core structures.  相似文献   

3.
4.
Alternative substrates for DNA and RNA polymerases offer an important set of biochemical tools. Many of the standard methods for nucleoside triphosphate synthesis fail in the cases of nonpurine and nonpyrimidine nucleosides. An efficient preparation of the 5'-O-tosylates for both the deoxy- and ribonucleosides enabled preparation of the diphosphate esters by displacement with tris(tetra-n-butylammonium) pyrophosphate. Enzymatic synthesis of the azole carboxamide deoxyribonucleoside triphosphate was based on ATP as the phosphate donor, nucleoside diphosphate kinase as the catalyst, coupled with phosphoenol pyruvate (PEP) and pyruvate kinase as an ATP regeneration system. Ribonucleoside triphosphate synthesis required PEP as the phosphate donor and pyruvate kinase as the catalyst. An optimized purification procedure based upon boronate affinity gel was developed to yield highly purified nucleoside triphosphates. The strategy outlined here provides a new and efficient method for preparation of nucleoside 5'-triphosphate and is likely applicable to a broad variety of base and sugar modified nucleoside analogues.  相似文献   

5.
The novel farnesyl diphosphate (FPP) analog 3-cyclopropyl-3-desmethylfarnesyl diphosphate (3-cpFPP, 1) was designed as a potential mechanism-based inhibitor of the FPP-utilizing enzyme protein-farnesyl transferase (PFTase). The key step in the synthesis of 1 involved the stereoselective coupling of vinyl triflate 8 with a lower order cyclopropyl cyanocuprate to afford the desired cyclopropyl ester 13. The sterically encumbered analog 3-desmethyl-3-tert-butylfarnesyl diphosphate (3-tbFPP, 7) was synthesized via a similar route. The use of the more reactive higher order tert-butyl cyanocuprate led to lower yields of ester 11, the key intermediate in the synthesis of 7. Biological evaluation of 3-cpFPP demonstrates that it is not a time-dependent inhibitor of recombinant yeast PFTase. Instead, 3-cpFPP is an alternative substrate for this enzyme that exhibits a K(m) comparable to FPP and a k(cat) only 5-fold lower than the natural substrate. In contrast, 3-tbFPP is an exceptionally poor substrate for yeast PFTase and acts as an inhibitor of this enzyme.  相似文献   

6.
An urocanamide nucleoside designed and previously tested as its protected ribose derivative in aprotic solvents for binding a cytosine-guanine (CG) Watson-Crick base pair was successfully incorporated into a triplex forming oligonucleotide. Binding affinity and specificity of this nonnatural nucleoside were studied in a triple helix with duplex targets containing all four possible Watson-Crick base pairs opposite the nucleoside analog in the third strand. UV melting experiments indicate the formation of a well-defined triplex with specific binding of the urocanamide analog to a CG inversion of the homopurine-homopyrimidine target. However, binding affinities in the triplex are weak and much lower when compared to the canonical base triads.  相似文献   

7.
alpha-l-Threofuranosyl nucleoside triphosphates (tNTPs) are tetrafuranose nucleoside derivatives and potential progenitors of present-day beta-d-2'-deoxyribofuranosyl nucleoside triphosphates (dNTPs). Therminator DNA polymerase, a variant of the 9 degrees N DNA polymerase, is an efficient DNA-directed threosyl nucleic acid (TNA) polymerase. Here we report a detailed kinetic comparison of Therminator-catalyzed TNA and DNA syntheses. We examined the rate of single-nucleotide incorporation for all four tNTPs and dNTPs from a DNA primer-template complex and carried out parallel experiments with a chimeric DNA-TNA primer-DNA template containing five TNA residues at the primer 3'-terminus. Remarkably, no drop in the rate of TNA incorporation was observed in comparing the DNA-TNA primer to the all-DNA primer, suggesting that few primer-enzyme contacts are lost with a TNA primer. Moreover, comparison of the catalytic efficiency of TNA synthesis relative to DNA synthesis at the downstream positions reveals a difference of no greater than 5-fold in favor of the natural DNA substrate. This disparity becomes negligible when the TNA synthesis reaction mixture is supplemented with 1.25 mM MnCl(2). These results indicate that Therminator DNA polymerase can recognize both a TNA primer and tNTP substrates and is an effective catalyst of TNA polymerization despite changes in the geometry of the reactants.  相似文献   

8.
The stability of an Abl kinase substrate peptide in a cytosolic lysate and in single cells was characterized. In the cytosolic lysate, the starting peptide was metabolized at an average initial rate of 1.7 ± 0.3 zmol pg(-1) s(-1) with a t(1/2) of 1.3 min. Five different fragments formed over time; however, a dominant cleavage site was identified. Multiple rational design cycles were utilized to develop a lead peptide with a phenylalanine and alanine replaced by an (N-methyl)phenylalanine and isoleucine, respectively, to attain cytosolic peptidase resistance while maintaining Abl substrate efficacy. This lead peptide possessed a 15-fold greater lifetime in the cytosolic lysate while attaining a 7-fold improvement in k(cat) as an Abl kinase substrate compared to the starting peptide. However, when loaded into single cells, the starting peptide and lead peptide possessed nearly identical degradation rates and an altered pattern of fragmentation relative to that in cell lysates. Preferential accumulation of a fragment with cleavage at an Ala-Ala bond in single cells suggested that dissimilar peptidases act on the peptides in the lysate versus single cells. A design strategy for peptide stabilization, analogous to that demonstrated for the lysate, should be effective for stabilization in single cells.  相似文献   

9.
A 4-(3-n-butylureidophenyl)imidazole nucleoside was successfully incorporated into a triplex-forming oligonucleotide (TFO). Binding affinity and base pair selectivity of the TFO containing this non-natural nucleoside were studied with various duplex targets containing all four possible Watson-Crick base pairs opposite the nucleoside analog in the third strand. Triplex thermal stabilities indicate that the synthetic nucleoside acts as a universal base in binding to all four possible Watson-Crick base pairs with moderate affinity but poor selectivity. Based on an analysis of its binding thermodynamics, this can be rationalized by the absence of strong specific interactions and more favorable entropic contributions upon triplex formation.  相似文献   

10.
In this paper, we synthesized a novel nucleoside analog by coupling thymine with dimethyl dicarboxylate biphenyl (DDB). The structure of the target compound was determined using 1H nuclear magnetic resonance (NMR) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). The fragmentation pathways were studied in details through ESI-MS/MS. By comparing with unsubstituted nucleosides, such as AZT, MCI, d4T and DDI, it was found that the nucleoside analog coupled with DDB would not yield the daughter ions corresponding to the fragments of the nucleoside base and arabinofuranose analogs, but would lose a neutral molecule HF and DDB easily. However, the unsubstituted nucleosides could lightly yield the fragment ions of the nucleoside base and sugar ring. Hence, electrospray ionization mass spectrometry combined with tandem mass spectrometry (MS/MS) provides a convenient method to recognize the substituted and unsubstituted nucleosides.  相似文献   

11.
A 6-aminopyrazin-2(1H)-one (pyADD), when incorporated as a pyrimidine-base analog into an oligonucleotide chain, presents a H-bond acceptor-donor-donor pattern to 5-aza-7-deazaisoguanine (puDAA), the complementrary donor-acceptor-acceptor purine analog. Reported here are the syntheses of the phosphoramidite of the 2′-deoxyribonucleoside bearing the puDAA base, oligonucleotides containing this nucleoside unit, the enzyme-assisted synthesis of oligoribonucleotides containing the pyADD ribonucleoside, and the molecular-recognition properties of this non-standard base pair in an oligonucleotide context. A series of melting experiments suggests that the pyADD · puDAA base pair contributes to the relative stability of a duplex structure approximately the same as an A · T base pair, and significantly more than mismatches between these non-standard bases and certain standard nucleobases. The pyADD nucleoside bisphosphate is accepted by T4 RNA ligase, but the triphosphate of the pyADD nucleoside was not incorported by T7 RNA polymerase opposite the puDAA nucleobase in a template. Oligonucleotides containing the pyADD base slowly undergo a reversible first-order reaction, presumably an epimerization process to give the α-D -anomer. These experiments provide the tools for laboratory-based use of the pyADD · puDAA base pair as a component of an oligonucleotide-like molecular-recognition system based on an expanded genetic alphabet.  相似文献   

12.
In an effort to expand the genetic alphabet, a number of unnatural, predominantly hydrophobic, nucleoside analogues have been developed which pair selectively in duplex DNA and during enzymatic synthesis. Significant progress has been made toward the efficient in vitro replication of DNA containing these base pairs. However, the in vivo expansion of the genetic alphabet will require that the unnatural nucleoside triphosphates be available within the cell at sufficient concentrations for DNA replication. We report our initial efforts toward the development of an unnatural in vivo nucleoside phosphorylation pathway that is based on nucleoside salvage enzymes. The first step of this pathway is catalyzed by the D. melanogaster nucleoside kinase, which catalyzes the phosphorylation of nucleosides to the corresponding monophosphates. We demonstrate that each unnatural nucleoside is phosphorylated with a rate that should be sufficient for the in vivo replication of DNA.  相似文献   

13.
A potent and highly selective inhibitor of protein kinase C alpha has been generated via the combinatorial modification of a consensus sequence peptide. The inhibitor displays a Ki of 800 pM versus variable peptide substrate and good selectivity versus other members of the PKC family, including PKCbeta (385-fold), PKCgamma (580-fold), PKCdelta (2730-fold), PKCepsilon (600-fold), PKCeta (1310-fold), PKCtheta (1210-fold), PKCiota (940-fold), and PKCzeta (640-fold). The parallel synthesis strategy employed is easily automated and straightforward to implement.  相似文献   

14.
Protein phosphorylation is one of the most basic mechanisms for regulating and controlling protein biological activity and function, and it is also a very important posttranslational modification process. Protein phosphorylation participates in and regulates many life activities such as signal transduction, gene expression, cell cycle, and so on. In this paper, we propose a method for the determination of the protein phosphorylation combining capillary electrophoresis (CE) with ATP analog labeling technique. We synthesized two new ATP analogs (ATP-NB and ATP-TATD-NB) functionalized by norbornene. Using Abl kinase as a model, we established a method for the determination of the kinase activity in solution and lysate by CE with laser-induced fluorescence detection (CE-LIF). This method was used to evaluate the efficiencies of kinase inhibitors. The IC50 values obtained are basically consistent with the reports. By D–A reaction (inverse electron demand Diels–Alder reaction) to label TZ-BODIPY fluorescence, we also realized the phosphorylation fluorescence detection of substrate peptide. Then, we used fluorescence confocal microscopy imaging technology to study the phosphorylation of proteins in vivo by the D–A reaction of ATP-NB and TZ-BODIPY. Our preliminary results documented that the combination of CE-LIF with analog ATP-NB labeling technique is an effective strategy for the determination of the protein phosphorylation and the kinase activity and for screening of kinase inhibitors. The D–A reaction of ATP-NB and TZ-BODIPY also laid the foundation for the subsequent in situ study of protein phosphorylation.  相似文献   

15.
States along the phosphoryl transfer reaction catalyzed by the nucleoside monophosphate kinase UmpK were captured and changes in the conformational heterogeneity of conserved active site arginine side‐chains were quantified by NMR spin‐relaxation methods. In addition to apo and ligand‐bound UmpK, a transition state analog (TSA) complex was utilized to evaluate the extent to which active site conformational entropy contributes to the transition state free energy. The catalytically essential arginine side‐chain guanidino groups were found to be remarkably rigid in the TSA complex, indicating that the enzyme has evolved to restrict the conformational freedom along its reaction path over the energy landscape, which in turn allows the phosphoryl transfer to occur selectively by avoiding side reactions.  相似文献   

16.
Abstract— At 5 days after sowing of pea seeds in darkness, intact seedlings were either irradiated with red light for 40 s at 50 μmol/m2/s at the third internode or with red light as above and then with far-red light for 180 s at 0.4 μmol/m2/s, and the stems were sectioned from below the hook (mainly the third internodes) and placed in liquid N2 in a mortar. The samples were well ground, and after the addition of extraction buffer, homogenates were centrifuged to prepare the crude membrane and soluble fractions. Red-light irradiation increased the phosphorylation of an 18 kDa protein, while far-red-light irradiation decreased it. The 18 kDa protein (formerly 15 kDa protein) was identified as nucleoside diphosphate kinase (EC 2.4.6) (NDP kinase) by western blotting using an NDP kinase-specific antibody. The membrane and the soluble fractions of the red-light-irradiated samples were separated by native polyacrylamide gel electrophoresis. The protein complexes prepared from the membrane and soluble fractions differed in their mobilities, as determined by two-dimensional electrophoresis and nonequilibrium pH gradient electrophoresis. The major protein spots from both samples were cut out from the gel and tested for NDP kinase and protein kinase activity. Both protein preparations showed NDP kinase activity and changes from nucleoside diphosphates and deoxynucleoside diphosphates to nucleoside triphosphates and deoxynucleoside triphosphates in the presence of [γ-32P]ATP. Both preparations showed protein kinase phosphorylation of myelin basic protein (MBP) rather than histone H1 as protein substrates, suggesting that NDP kinase possesses a function similar to that of MAP kinase.  相似文献   

17.
The anti-HIV activity of nucleoside analogues is highly related to their substrate specificity for cellular and viral kinase and, as triphosphate, for HIV-RT. A series of phosphoramidate d4T derivatives have been synthesized and evaluated as substrates for HIV-1 RT, and also tested for their in vitro anti-HIV activity. Compounds 2 and 4 are able to inhibit HIV-1 replication to the same extent as d4T and d4TMP in MT-4 cells as well as in CEM/0 cells and CEM/TK(-) cells. The data suggests that these phosphoramidates are hydrolysed to d4T before exerting their antiviral activity.  相似文献   

18.
A series of polyhydroxylated bicyclic nucleoside derivatives is approached applying stereoselective dihydroxylation reactions. Three out of four isomeric and protected products were obtained after the stereoselectivity of dihydroxylation has been completely inverted comparing a bicyclic nucleoside with a tricyclic furanose substrate. A corresponding 2'-deoxynucleoside derivative has been obtained after an optimized deoxygenation procedure.  相似文献   

19.
Orotidine 5'-monophosphate decarboxylase (OMPDC) catalyzes the exchange for deuterium from solvent D(2)O of the C-6 proton of 1-(β-d-erythrofuranosyl)-5-fluorouracil (FEU), a phosphodianion truncated product analog. The deuterium exchange reaction of FEU is accelerated 1.8 × 10(4)-fold by 1 M phosphite dianion (HPO(3)(2-)). This corresponds to a 5.8 kcal/mol stabilization of the vinyl carbanion-like transition state, which is similar to the 7.8 kcal/mol stabilization of the transition state for OMPDC-catalyzed decarboxylation of a truncated substrate analog by bound HPO(3)(2-). These results show that the intrinsic binding energy of phosphite dianion is used in the stabilization of the vinyl carbanion-like transition state common to the decarboxylation and deuterium exchange reactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号