首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在荧光材料中掺杂合适的磷光敏化剂,可以大大提高荧光有机电致发光器件(OLED)的效率.选择磷光材料fac-tris(2-phenylpyridinato-N,C2')iridium(Ⅲ)(Ir(ppy)3)分别与荧光材料4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl(DCJTB)、5,6,11,12,-tetraphenylnaphthacene(Rubrene)掺杂作为发光层,当掺杂质量比合适时,磷光材料的发光消失,得到了纯正的荧光材料的发光.同时,对磷光材料的敏化作用及发光机制进行了分析,比较了Ir(ppy)3对两种不同荧光材料的敏化作用强弱,发现Ir(ppy)3对荧光材料Rubrene的敏化作用更强.对影响敏化作用的因素进行了分析,推测其原因与磷光材料和荧光材料的相容性质有关.  相似文献   

2.
Ir(PPY)3对Rubrene荧光材料的敏化性研究   总被引:1,自引:1,他引:0  
最近几年,磷光器件是有机电致发光研究领域和产业化的一大热点。在实验中作者发现PVK∶PBD∶Rubrene共掺体系的发光中存在较强的PVK发光,能量传递不充分。由于一些具有重金属离子的有机物,存在强的自旋-轨道耦合作用,引入到共掺体系可以充分利用单线态和三线态的发光,从而获得高于一般有机材料器件所达到的内量子效率。为获得单色性较好的Rubrene发光,作者将磷光敏化剂Ir(ppy)3引入到PVK∶PBD∶Rubrene共掺溶液中,得到了纯正Rubrene发光,Forester能量传递也更加充分。当进一步提高Rubrene掺杂浓度以后,单色性Rubrene发光更加明显,并讨论了Ir(ppy)3所起的作用和器件的发光机理。磷光材料与有机小分子材料共掺的方法,可以有效提高器件的发光亮度及效率。  相似文献   

3.
OLED技术被认为是最有可能取代液晶显示的全新技术,而OLED中的有机电致磷光器件是近年来的研究热点.有机电致磷光器件的发光层往往采用主客体掺杂体系,主客体分子内的能量传递是磷光发光体分子被激发的主要途径,因此选择吸收能量和传递能量好的主体材料是改进有机电致磷光器件性能的主要途径之一.文章分别以PVK和CBP作为主体材料,以磷光材料Ir(PPY)3和荧光材料Rubrene作为掺杂剂,制备了不同配比的器件,研究了主体材料和掺杂剂之间的能量传递特性.结果发现,这两种主体材料分别通过Ir(ppy)3向Rubrene传递能量是主要的能量传递机制,而且CBP作为主体时能量传递比PVK更充分.另外掺入Ir(ppy)3后的器件比不掺Ir(ppy)3的器件在相同电压下的光功率明显增强.当我们增加Ir(PPY)3的浓度时,相同电压下的光功率下降,浓度猝灭效应增强.  相似文献   

4.
对常温下磷光染料Ir(ppy)3掺杂PVK薄膜的光致发光(PL)和电致发光(EL)特性进行了研究。器件结构为ITO/PEDOT:PSS/PVK:Ir(ppy)3/BCP/Alq3/Al。实验发现随磷光材料掺杂浓度的不同,器件的发光性能发生变化。当浓度适宜时,主体材料PVK的发光很弱,主要为Ir(ppy)3的磷光发射。通过L-I-V特性曲线的比较,掺杂浓度为5%的光电性能最好,说明器件在掺杂浓度为5%时效果最佳。  相似文献   

5.
磷光材料由于可以利用电致激发所形成的单重态和三重态激子,因而可以得到接近100%的内量子效率。文章对常温下基于磷光材料Ir(ppy)3及Ir(piq)3掺杂PVK薄膜为发光层的器件的光学和电学特性进行了研究。光致发光的结果显示相同掺杂质量比下由PVK到Ir(piq)3的能量传递比到Ir(ppy)3更加困难。通过研究两种掺杂体系不同质量比的电致发光特性,可以认为这两种磷光器件的发光主要来自于磷光客体分子直接俘获载流子发光而非主体的能量传递。Ir(piq)3掺杂体系对掺杂比例的依赖更为明显,从能级结构分析,认为是由于Ir(piq)3的更低的HOMO及高的LUMO能级,而比Ir(ppy)3具有更好的载流子俘获和传输特性。  相似文献   

6.
将高量子效率的磷光材料fac-tris-2-phenylpyridine iridium(III) (Ir(ppy)3)按不同的比例掺杂到具有载流子传输能力的主体材料poly(N-vinylcarbazole) (PVK)中作为发光层制备磷光电致发光器件。通过对器件发光机制的研究,发现光致发光过程中起主导作用的是Fo¨ster能量转移机制;而在电致发光过程中,器件的发光性能受Dexter能量转移和电荷陷获2种能量传递形式的影响。器件的I-V-L特性表明:Ir(ppy)3的掺杂比例为5%时,器件的光功率效率最大,能量转移最充分。  相似文献   

7.
在空穴传输层TCTA与电子传输层TPBi之间引入磷光染料Ir(ppy)3超薄发光层,制备了结构为ITO/MoO_3(2 nm)/NPB(40 nm)/TCTA(10 nm)/Ir(ppy)3(xnm)/TPBi(40 nm)/LiF(1 nm)/Al(80 nm)的非掺杂磷光有机电致发光器件。通过调控非掺杂发光层的厚度,详细研究了Ir(ppy)3层厚度对器件性能的影响。实验结果表明,当非掺杂发光层厚度为0.2 nm时,器件的性能最好,器件的亮度、效率和外量子效率分别达到26 350 cd·m~(-2)、42.9 cd·A~(-1)和12.9%。研究结果表明,采用超薄的非掺杂发光层可以简化器件结构和制备工艺,获得高效率的OLED器件。  相似文献   

8.
为了比较单线态激子与三线态激子形成截面的大小,作者将荧光染料4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) 和磷光材料factris-(2-phenylpyridine) iridium [Ir(ppy)3]共掺杂在N-vinylcarbazole (PVK)中作为发光层,制作了多层有机电致发光器件。通过对其光致发光及电致发光特性的研究,计算出Ir(ppy)3激子的形成截面比DCJTB激子的形成截面大得多。  相似文献   

9.
研究利用溶液法制备的有机磷光双重掺杂体系电致发光器件的光致发光特性与电致发光特性,并研究了在这种体系中深能级陷阱导致的器件效率衰退现象。首先利用紫外光谱仪和光致瞬态寿命测试系统对基于旋涂法制备的以宽带隙材料4,4’-bis(N-carbazolyl)-1,1’-biphenyl(CBP)为主体,绿色磷光材料tris(2-phenylpyridine) iridium(Ⅲ)(Ir(ppy)3)和红色磷光材料tris(1-phenylisoquinolinato-C2,N)iridium(Ⅲ)(Ir(piq)3)为客体材料的薄膜进行了光致发射光谱测试和薄膜在Ir(ppy)3发光峰516 nm处的光致发光寿命测试,实验发现在Ir(ppy)3掺杂比例保持定值时,随着深能级掺杂材料Ir(piq)3的引入,其光致发光光谱中Ir(ppy)3的相对发光强度减弱且发光寿命变短,当Ir(piq)3掺杂浓度继续提高时,薄膜光致发光光谱基本保持不变且Ir(ppy)3的发光寿命基本不变。实验说明在低浓度掺杂下两者的三线态能级之间存在着能量传递,但当掺杂浓度达到高浓度时,能量传递主要来自于主客体之间的传递,两者作为独立的发光中心发光。然后利用溶液法制备了发光层分别为CBP∶Ir(ppy)3,CBP∶Ir(ppy)3∶Ir(piq)3和CBP∶Ir(ppy)3∶PTB7的三组器件,器件结构为ITO/PEDOT∶PSS/Poly-TPD/EML/TPBi(15 nm)/Alq3(25 nm)/LiF(0.6 nm)/Al(80 nm)。在Ir(ppy)3和Ir(piq)3共掺杂器件和Ir(ppy)3单掺杂器件的对比实验中发现,加入一定比例的深能级材料后,器件的电致发光光谱发生改变,Ir(piq)3的相对发光强度增强,器件发光效率下降且效率滚降现象明显。通过对器件进行J-V测试,发现在Ir(ppy)3单掺杂器件中陷阱填充电流随着掺杂材料浓度的提高而提高,但在加入等浓度深能级材料Ir(piq)3后,陷阱填充电流基本保持一致。瞬态电致发光测试表明,随着Ir(ppy)3掺杂比例的提高,器件内由于陷阱载流子释放而产生的瞬时发光强度降低,这是由于Ir(ppy)3具有一定的传导电荷作用,会减少器件中的陷阱载流子,这进一步说明了具有较深能级的Ir(piq)3是限制载流子的主要能级陷阱。同时发现随反向偏压的增大,瞬态发光强度增大且发光衰减加速,这是因为位于深能级陷阱的载流子在高电压下被释放,重新复合发光,说明深能级陷阱的确限制住了大量载流子,而由于主体三线态激子具有较长的寿命,激子间相互作用产生的单线态激子在高反压下解离,从而引起三线态激子-极化子相互作用的加剧,导致发光衰减加速。在窄带隙聚合物材料PTB7与Ir(ppy)3共掺杂器件实验中发现,随着PTB7掺杂浓度提高,陷阱浓度变大且器件效率降低,具有较深能级的PTB7成为了限制载流子的深能级陷阱。因此说明在双掺杂有机磷光电致发光器件中,深能级材料会成为限制载流子的能级陷阱,引起载流子大量堆积,从而导致三线态激子与极化子相互作用加剧,使器件的发光效率衰退。  相似文献   

10.
采用不同的真空热梯度升华条件,获得了不同纯度的乙酰丙酮酸二(2-苯基吡啶)铱Ir(ppy)2(acac)。以不同纯度Ir(ppy)2(acac)为客体材料,制备了结构为ITO:MoO3/CBP/CBP:Ir(ppy)2(acac)/TPBi/LiF:Al的有机发光二极管(OLEDs),其中CBP和TPBi分别是4,4'-二(9-咔唑)联苯和1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯。评价了不同纯度磷光铱配合物制备的器件的电致发光性能,探索了磷光铱配合物纯度对器件性能的影响。结果表明:Ir(ppy)2(acac)升华后可以提高器件的稳定性,纯度高的材料可以在较低的掺杂浓度下获得较高的发光效率。  相似文献   

11.
以苯乙烯类化合物BCzVB为蓝色荧光染料,以铱配合物Btp_2Ir(acac)为红色磷光染料,共掺杂到CBP基质中作为发光层,制备了白色有机电致发光器件,研究了该体系发光色度漂移的原因。器件在掺杂CBP:6?zVB: 0.2%Btp_2Ir(acac),在.驱动电流从4~200 mA/cm~2变化范围内,发光色坐标从(0.340,0.273)飘移到(0.308, 0.273),色坐标轻微蓝移。对器件发光光谱和亮度-电流密度曲线等分析表明:器件色度的轻微蓝移是由于CBP基质向Btp_2Ir(acac)掺杂剂完全的能量传递、荧光染料BCzVB向磷光染料Btp_2Ir(acac)不完全的能量传递等内在物理过程和磷光染料Btp_2Ir(acac)自身发光饱和等特性共同决定的。  相似文献   

12.
对蓝色磷光材料Ir(Fppy)3不同浓度掺杂PVK薄膜的光致发光(PL)和电致发光(EL)特性进行了研究。并制备了结构为ITO/PEDOT:PSS/PVK:Ir(Fppy)3/BCP/Alq3/LiF/Al的蓝色磷光有机电致发光器件。实验结果发现,磷光材料掺杂浓度不同,器件发光特性不同。当Ir(Fppy)3掺杂浓度比较低时,EL光谱中可以观察到PVK较弱的发光;当Ir(Fppy)3掺杂浓度较高时,会发生浓度猝灭;当Ir(Fppy)3掺杂浓度比较适中时,EL光谱中观察不到PVK的发光,只有Ir(Fppy)3的发光。通过I-V-L特性的比较,当掺杂浓度为4%时,器件的光电特性最好。  相似文献   

13.
沈方中  路萍  邱松  马於光 《发光学报》2003,24(6):599-601
小分子磷光染料掺杂的聚合物发光器件具有发光效率高、制备工艺简单等优点,但是应该注意小分子染料的聚集与相分离问题,特别是在高掺杂浓度时更应注意防止相分离现象的发生。我们的思路是通过使用聚芴(Polyfluorene,PF)改性后的母体聚合物材料PC(poly[2,7-(9,9-dihexyl fluorene)-co-alt-2,10-(cyclohex—ane-1-spiro-6/-dibenzo[d,f][1,3]dioxepin)]),由于其发光峰位蓝移到紫外区,这就与作为掺杂分子的Ir(ppy)3配合物的吸收匹配得更好,进而达到提高能量转移效率的目的。在此条件下,可以实现较低掺杂浓度的发光,这对降低小分子染料的聚集以及相分离现象的发生是有帮助的。采用的器件结构为ITO/PEDOT:PSS/polymer:Ir(ppy)3/Ba/Al.当使用传统PF材料作为母体时,Ir(ppy)3需达到4%的掺杂比例才能实现能量的完全转移,而当采用改进后的PF作为母体时,Ir(ppy)3配合物只需达到0.5%的掺杂比例就能实现能量的完全转移,改进后的器件掺杂比例大幅度降低。  相似文献   

14.
从三线态激子的发光机理入手,研究了PBD作为电子传输材料对PVK:Ir(ppy)3体系的影响。实验中制备了单层器件ITO/PVK:Ir(ppy)3/PBD/Al,ITO/PVK:Ir(ppy)3:PBD/Al和双层器件,ITO/PVK:Ir(ppy)3:PBD/BCP/Al,其中PVK:Ir(ppy)3的掺杂浓度比例不变,通过改变PBD的掺杂浓度,其变化范围是PBD与PVK的质量比从0:100到20:100,制得了一系列器件,研究了它们的光致发光(PL)光谱和电致发光(EL)光谱。发现PBD这种电子传输材料的加入对器件的亮度有很大提高,当PBD与PVK质量比为10%时,器件亮度最大。  相似文献   

15.
鲁晶 《光谱实验室》2009,26(5):1306-1309
将磷光材料三-(2-苯基吡啶)-铱[Ir(ppy)3]掺杂在聚乙烯基咔唑(PVK)中作为发光层,制作了多层有机电致发光器件。采用常规的光电测量方法,研究其光致发光及电致发光特性,得到了激子形成截面随电压的变换关系。  相似文献   

16.
制备了结构为ITO/NPB/CBP:TBPe:rubrene/BAlq:Ir(piq)2(acac)/BAlq/Alq3/Mg:Ag的白色磷光有机电致发光器件.利用两种不同的主体材料,即用双载流子传输型主体材料CBP掺杂荧光染料TBPe及rubrene作为蓝光和橙黄光发光层;用电子传输型主体材料BAlq掺杂磷光染料Ir(piq)2(acac)作为红色发光层.以上双发光层夹于空穴传输层NPB与具有电子传输性的阻挡层BALq之间.讨论了如何控制 关键词: 有机电致发光 磷光染料 掺杂 白光  相似文献   

17.
设计出一种酰胺类金属铱有机配合物磷光电致发光材料,该材料是以2-苯基喹啉(pq)为主配体,N-苯基甲基丙烯酰胺(N-phMA)为辅助配体的金属配合物(pq)2Ir(N-phMA)。该化合物的结构由核磁,红外表征确定,它在586nm处的强荧光发射,表明它是一种可用于OLED的黄光发光材料。  相似文献   

18.
Ir(PPY)3掺杂PVK的电致发光机理   总被引:5,自引:4,他引:1       下载免费PDF全文
近几年来发展起来的电致磷光(electrophosphorescence)是有机发光二极管(OLED)研究的新生长点。对电致磷光发光机理的研究随即得到了人们普遍的关注。比较了不同正向偏压条件下Ir(PPY)3掺杂聚乙烯基咔唑(PVK)的光致发光(PL)和电致发光(EL)光谱。研究结果显示在电场和注入电流的共同作用下,PL光谱中基质PVK发光的相对强度并没有发生显著的变化。电场或注入载流子不会影响PVK向Ir(PPY)3的能量传递。磷光掺杂聚合物EL主要是由于载流子在掺杂磷光分子上的直接复合,而不是由基质向磷光掺杂分子的能量传递。  相似文献   

19.
掺杂型有机电致发光器件中载流子累积、载流子复合等物理过程的深入了解对提高器件效率和稳定性有重要作用。通过瞬态电致发光测量可以研究掺杂型有机电致发光器件内部载流子累积。对结构为: ITO/NPB(30 nm)/host: Ir(ppy)3/BCP(10 nm)/Alq3(20 nm)/LiF(0.7 nm)/Al(100 nm)的器件分别研究主体材料以及客体掺杂浓度变化对有机掺杂型器件瞬态发光行为的影响。实验发现,当单脉冲驱动电压关闭后,只有TAZ: Ir(ppy)3掺杂器件出现发光瞬时过冲现象,即发光强度衰减到一定时间时突然增强;且随着客体掺杂浓度的增加,瞬时过冲强度逐渐增强。通过分析TAZ: Ir(ppy)3掺杂器件的瞬时过冲强度对主体材料与掺杂浓度的依赖关系,进一步发现,瞬时过冲效应强度主要受限于发光层内部积累的电子载流子;TAZ: Ir(ppy)3发光层内电子容易被客体材料分子俘获并积累,电场突变时陷阱电子容易跳跃到主体材料上并与主体材料上积累的空穴形成激子,激子能量传递到客体材料上并复合发光继而出现发光强度的瞬时过冲现象。研究发光瞬时过冲行为可探究器件发光层内的载流子和激子的动态行为,有利于指导器件的设计,从而减少积累电荷的影响,提高器件的性能。  相似文献   

20.
新型红色磷光铱配合物的合成与电致发光性能   总被引:1,自引:0,他引:1       下载免费PDF全文
设计并合成了含羟基配体8-苯并噻唑基2-萘酚(HNBT),并以其为辅助配体、2-苯基吡啶(ppy)为第一配体合成了红色磷光铱配合物Ir(ppy)2(NBT)。采用真空蒸镀的方法,以Ir(ppy)2(NBT)为发光中心制备了红色有机电致磷光器件,详细研究了配合物Ir(ppy)2(NBT)的热稳定性、光物理与电致发光性能。值得注意的是,配合物Ir(ppy)2(NBT)的发射谱图近似于高斯形状,只有一个位于614 nm的发射主峰,没有肩峰出现,且半峰宽仅为65 nm;此外,基于配合物Ir(ppy)2(NBT)的最佳器件的最大亮度和效率分别是6 400 cd/m2和4.53 cd/A。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号