首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
希夫碱配合物M3L6(NO3)6(H2O)2的合成与光谱性质   总被引:1,自引:0,他引:1  
以4-氨基-1,2,4-三氮唑与对二甲氨基苯甲醛为原料,在冰醋酸催化下合成了配体4-氨基-1,2,4-三氮唑缩对二甲氨基苯甲醛(L).然后利用L与过渡金属硝酸盐[M(NO3)2·xH2O(M=Cu,C0,Zn,Cd;x=3~6)]在无水乙醇中反应,制得固态配合物M3L6(NO3)6(H2O)2.通过元素分析、红外光谱、紫外光谱、荧光光谱等手段对合成的配体及配合物进行了表征.实验结果表明,该物质是一种多晶粉末状的发光材料,在紫外光的激发下,在乙醇溶液体系中的荧光发射峰在416 nm处,为蓝色荧光,色纯度高,荧光量子效率高,而配合物M3L6(NO3)6(H2O)2的荧光发射峰则红移至445 nm左右,同时荧光强度显著增强.M3L6(NO3)6(H2O)z中与M(Ⅱ)发生配位作用的基团是配体中三氮唑环上的氮原子.  相似文献   

2.
在氮气保护下,以无水乙醇为溶剂,制备了硝酸镧与4-氨基-1,2,4-三氮唑缩对二甲氨基苯甲醛(L)配合物,单晶结构分析确定其组成为LaL_3(NO_3)_3·(H_2O)_2·(C_2H_5OH)_2,配合物中La~(3+)分别与3个硝酸根、2个水分子和2个分子乙醇中的氧原子配位,配位数为10,并与4-氨基-1,2,4-三氮唑缩对二甲氨基苯甲醛以氢键形式结合形成立体结构分子.通过元素分析、红外光谱、固体荧光光谱等手段对合成的配体及配合物进行了表征.实验结果表明,4-氨基-1,2,4-三氮唑缩对二甲氨基苯甲醛是一种多晶粉末状的发光材料,固体荧光谱图显示荧光发射峰在451 nm处,为蓝色荧光,色纯度高,荧光量子效率高,而合成的配合物的荧光发射峰则红移至464 nm左右,同时荧光强度显著增强近一倍.  相似文献   

3.
以去离子水为溶剂,合成了以Zn2+及N12+为中心,以L1,L2[L1=4-氨基-3,5-二甲基-1,2,4-三唑,L2=4-氨基-1,2,4-三唑]及硫氰酸根为配体的两种配合物,对其进行了元素分析、金属离子络合滴定、摩尔电导测定,确定了配合物组成分别为Zn3(NCS)6(L1)6(NO3)2及Ni3(NCS)6(L2)6(NO3)2,同时对两种配合物做了红外光谱、紫外光谱及荧光光谱的测试表征.荧光光谱的测试表明两种配合物均在415 nm有一强的荧光发射峰,且镍配合物的荧光要明显强于锌配合物,两种配合物有望成为蓝光发光材料.  相似文献   

4.
合成了一种新的双β二酮配体1,4-二苯甲酰乙酰苯(TDAP),并成功合成了它的两个双核稀土配合物Eu2(TDAP)3·(H2O)2和Tb2(TDAP)3·(H2O)6。通过元素分析、红外光谱、紫外可见光谱和荧光光谱对配合物进行了表征与性能研究。荧光分析表明,在紫外灯下配体本身就发出蓝紫色荧光,通过对配体TDAP的磷光光谱分析计算得到了配体的平均三重态能级。配合物Eu2(TDAP)3·(H2O)2的发射光谱分析表明,配体自身的发射几乎完全被淬灭,能量成功传递给了中心离子,因此配合物发出了明显的特征峰,主发射峰为Eu3+的5D0-7F2发射。由荧光分析知,配合物Eu2(TDAP)3·(H2O)2的激发光谱与配体发射光谱的重叠,这验证了配体TDAP对于Eu3+能量传递的有效性。此外,还详细分析了两种配合物的能量传递过程及发光机理,配合物Tb2(TDAP)3·(H2O)6几乎不发光,这是因为配体的三重态能级与Tb3+的最低激发态能级不匹配。合成的配合物Eu2(TDAP)3·(H2O)2有很强荧光,是一种有效的红色发光材料。  相似文献   

5.
合成了四种N,N′-双(2-吡啶甲酰胺)-1,2-乙烷(H2L)稀土配合物.经过对元素分析,红外光谱,紫外光谱,热重分析和摩尔电导值的分析,确定配合物的组成为:[Ln(H2L)(NO3)2](NO3)·3H2O(Ln=Sm,Eu,Gd,Tb).光谱测试结果表明:配体H2L中酰胺羰基氧和吡啶氮分别与稀土离子配位,硝酸根为双齿配体,Im(Ⅲ)与H2L形成了1∶1的螯合物.另外,通过紫外光谱、荧光光谱和表面增强拉曼光谱方法对Sm配合物与DNA之间的作用进行了初步的研究.实验结果显示随着DNA的加入[Sm(H2L)(NO3)2](NO3)·3H2O配合物在265 nm处的紫外吸收峰逐渐减小,并产生红移现象,得到配合物与DNA的结合常数为1.24×105.Sm配合物使EB-DNA体系发生荧光猝灭,由于配合物和EB争夺与DNA的结合位点,从而使体系中游离的EB增多.表面增强拉曼光谱峰的变化亦显示随着.DNA的加入配合物的谱峰强度减弱,同时1 282cm-1处的谱峰消失,说明配体的吡啶环在一定程度上插入了DNA的双螺旋平面,导致吡啶环的电子云密度发生改变.以上结果表明配合物和DNA发生了显著的作用.  相似文献   

6.
在无水乙醇溶剂中,合成双对二甲氨基苯甲醛缩邻苯二胺(L)新型Schiff碱配体,并且在丙酮溶液中合成了它的Ce()配合物。经元素分析、摩尔电导、IR、UV、TG-DTA、1HNMR等分析表明:配合物的可能组成是[CeL2(NO3)2](NO3).2H2O,为1:2(Ce:L)型、含两个结晶水的紫红色固体配合物,电解质类型为1:1型,即配合物外界有1个NO3-,另2个NO3-在配合物的内界以螯合双齿形式参与了配位,中心Ce(Ⅲ)离子的配位数为8。  相似文献   

7.
采用Claisen缩合反应合成了一种新型的β-二酮化合物1-(4-溴苯)-3-苯基丙烷-1,3-二酮(L),并以其为第一配体,邻菲罗啉(Phen)为第二配体,合成出新型稀土Eu(Ⅲ)三元配合物。通过元素分析、红外光谱、紫外光谱、荧光光谱对合成的配体及三元配合物进行了表征。红外光谱的分析表明:配体L含有β-二酮结构,且烯醇式含量高;配合物中L的氧原子以及Phen中的氮原子与稀土离子进行了配位。紫外光谱的分析表明配合物中的能量传递主要来自第一配体。通过荧光光谱研究了配合物的发光性质,结果显示配合物表现出Eu3+的特征发射,主发射峰为Eu3+的5D0 →7F2发射,属于窄带发射,单色性较好,是具有潜在应用价值的红色发光材料。  相似文献   

8.
合成了Schiff碱配体双对二甲氨基苯甲醛缩乙二胺(L)及其与La(Ⅲ)形成的新的固体配合物。经元素分析、红外光谱、差热-热重分析、核磁共振氢谱及摩尔电导等表征可知,配合物属于1∶1型的电解质,La(Ⅲ)和来自2个Schiff碱配体的4个N原子以及来自2个硝酸根离子的4个O原子配位,中心La(Ⅲ)离子的配位数为8,配合物可能的结构式为[LaL2(NO3)2]NO3.2H2O。通过琼脂扩散抑菌法测定了产物的抑菌性能,结果表明,该配合物对金黄色葡萄球菌、大肠杆菌和绿脓杆菌具有较好的抗菌活性。  相似文献   

9.
合成了四种N,N'-双(2-吡啶甲酰胺)-1,2-乙烷(H2L)稀土配合物。经过对元素分析,红外光谱,紫外光谱,热重分析和摩尔电导值的分析,确定配合物的组成为:[Ln(H2L)(NO3)2](NO3)·3H2O(Ln=Sm,Eu,Gd,Tb)。光谱测试结果表明:配体H2L中酰胺羰基氧和吡啶氮分别与稀土离子配位,硝酸根为双齿配体,Ln(Ⅲ)与H2L形成了1:1的螯合物。另外,通过紫外光谱、荧光光谱和表面增强拉曼光谱方法对Sm配合物与DNA之间的作用进行了初步的研究。实验结果显示随着DNA的加入[Sm(H2L)(NO3)2](NO3)·3H2O配合物在265m处的紫外吸收峰逐渐减小,并产生红移现象,得到配合物与DNA的结合常数为1.24×10^5.Sm配合物使EB-DNA体系发生荧光猝灭,由于配合物和EB争夺与DNA的结合位点,从而使体系中游离的EB增多。表面增强拉曼光谱峰的变化亦显示随着DNA的加入配合物的谱峰强度减弱,同时1282cm^-1处的谱峰消失,说明配体的吡啶环在一定程度上插入了DNA的双螺旋平面,导致吡啶环的电子云密度发生改变。以上结果表明配合物和DNA发生了显著的作用。  相似文献   

10.
邻苯二胺与5-氯-2-羟基二苯酮、水杨醛作用合成了一种异双四齿希夫碱配体C26H19N2O2(H2L).在正丁醇和甲醇体系中醋酸铜与该配体反应合成了一种固体配合物CuL.通过质谱分析、元素分析、IR、UV、TG-DTG及摩尔电导分析等手段对合成的配体及配合物进行了表征,初步研究了它们的荧光性质,发现希夫碱试剂在385 nm处有一强荧光发射峰.在pH 9.62时,铜(Ⅱ)离子与试剂形成的配合物可使其荧光猝灭.  相似文献   

11.
钬铥双掺钨酸镱钾激光晶体光谱参数计算   总被引:1,自引:1,他引:0       下载免费PDF全文
采用顶部籽晶提拉法(TSSG)生长了钬铥双掺钨酸镱钾(KHo0.04Tm0.06Yb0.9(WO42)激光晶体。测试了该晶体的吸收及荧光光谱,计算了其光谱参数。实验结果表明:该晶体在890~1 000 nm范围吸收带较宽,半峰宽为90 nm,计算了主峰1 000 nm处吸收截面为16.92×10-20 cm2;Tm3+在1 690~1 812 nm范围存在较宽的吸收带,半峰宽为118 nm,易于实现Yb→Ho、Yb→Tm、Tm→Ho的能量传递。根据Judd-Ofelt理论,计算了该晶体的光谱强度参数。根据Tm3+、Ho3+、Yb3+离子能级图,讨论了产生1 750~2 200 nm荧光发射的3种能量传递方式。最后计算了主峰2 030 nm处受激发射截面为3.47×10-20 cm2,表明该晶体可作为2 μm波段优异的激光增益介质。  相似文献   

12.
朱超云  周翼  姚成 《光谱实验室》2011,28(4):1608-1611
合成了多齿配体4′-[4-(3吡-啶基)苯基]-2,2′:6′,2″-联三吡啶(L),研究了L与过渡金属(Zn^2+,Cu^2+,Co^2+)形成配合物的紫外可见光谱和荧光发射光谱。结果表明:在95%乙醇溶液中,L的最大吸收峰位于295nm,形成配合物后,在330nm附近出现了新的吸收峰;与L相比,Zn^2+使L的荧光增强并红移,而Cu^2+和Co^2+能够完全猝灭L的荧光。由此可见,L不仅能够与金属离子构建组装体,也可以作为具有潜在应用价值的荧光材料。  相似文献   

13.
2(水杨醛缩苯胺)-(1,10-邻菲罗啉)合钙的光谱特性   总被引:1,自引:1,他引:0       下载免费PDF全文
合成了一种新型的蓝光发射材料2(水杨醛缩苯胺)-(1,10-邻菲罗啉)合钙,并利用红外光谱、X射线衍射谱、DSC热分析、UV-vis吸收谱、荧光激发光谱和荧光发射光谱研究了其结构、晶态、热稳定性以及光学特性,分析了它的能态结构和发光机理。结果表明,2(水杨醛缩苯胺)-(1,10-邻菲罗啉)合钙的热稳定性较高,是一种多晶粉末发光材料,禁带宽度2.93eV,在紫外光的激发下,固态荧光发射峰在449.7nm处,在乙醇溶液体系中的荧光发射峰在491nm处,均为蓝色荧光,色纯度高,荧光量子效率高,其荧光发射主要来源于长波吸收带,最大波长吸收带对荧光发射贡献最大。  相似文献   

14.
Novel Eu3+, Ce3+ activated NaBa4(BO3)3 phosphors were synthesized by solid-state reactions. The excitation spectrum of NaBa4(BO3)3:Ce3+ consists of an intense band peaking at 350 nm and a weak band in the higher energy side, and the emission spectrum exhibits a blue band with a maximum at about 420 nm. The Eu3+ emission in NaBa4(BO3)3 consists of the transitions from 5D0 to 7FJ, and the excitation spectrum consists of broad excitation band peaking at 270 nm and some intense narrow lines. The optimum doped concentration, the critical distance of the concentration quenching, and the fluorescence lifetime have also been investigated.  相似文献   

15.
The spectroscopic properties of high-quality Czochralski grown 20% Yb3+-doped Li6Y(BO3)3 single crystal as new promising laser material are presented. The crystal was seeded-grown in the 〈0 1 0〉 direction and its crystallinity was measured using X-ray rocking curve analysis. Low temperature transmission spectrum exhibits broad bands in a short range of wavelengths and two sharp lines at 972.5 and 978 nm, interpreted as two zero-lines of two nonequivalent Yb3+ centers inside the lattice. The fluorescence lifetimes associated to these two intense lines are different: 0.867 and 1.33 ms. An attempt of determination of the Stark sublevels energies of the 4F5/2 and 4F7/2 manifolds of the two Yb3+ nonequivalent ions is given. The polarized absorption and emission spectra were also recorded at room temperature and we conclude that the most favorable emission line for laser application could be around 1042 nm in ng polarization.  相似文献   

16.
Yb3+掺杂KY(WO4)2激光晶体生长、结构与光谱分析   总被引:1,自引:0,他引:1       下载免费PDF全文
采用顶部籽晶提拉法(TSSG)生长出Yb:KY(WO4)2(Yb:KYW)激光晶体.对预烧后的原料及晶体进行了XRD分析,结果表明,分别在920℃和600℃预烧8h后的熔质和助熔剂基本上形成一相,抑止了实验中的挥发问题;所生长的晶体为β-Yb:KYW,计算其晶格常数为a=1.063nm,b=1.034nm,c=0.755nm,β=130.75°.测得不同厚度样品的吸收光谱,结果表明样品在933nm和981nm有较强的吸收峰,计算出主峰981nm的吸收截面σ关键词: Yb:KYW TSSG法 晶体结构 光谱参数  相似文献   

17.
Nd:Ca4YO(BO3)3 (Nd:YCOB) crystal was grown by the Czochralski method, and its structure was measured by using a four circle X-ray diffractometer. The transparent spectrum from 200 to 2600 nm was measured at room temperature. The fluorescence spectrum near 1.06 μm showed that the main emission wavelength of Nd:YCOB crystal was centered at 1060.8 nm. Laser output at 1.06 μm has been demonstrated when it was pumped by a Ti:sapphire laser at the wavelength of 794 nm, the highest output power was 68 mW under pumping power of 311 mW, the pumping threshold was 163 mW and slope efficiency was 46.9%. The self-frequency doubled green light has been observed when it was pumped by a Ti:sapphire or a laser diode (LD). A 14.5 mm Nd:YCOB crystal sample cut at (θ, φ)=(90°, 33°) was used for type I second-frequency generation (SHG) of the 1.06 μm laser pulse. The SHG conversion efficiency was 22%.  相似文献   

18.
Dy3+: Ca3(BO3)2 crystal was grown successfully by the Czochraski technique. The absorption spectrum was measured and its absorption peaks were assigned. The Judd-Ofelt intensity parameters were found to be Ω2=5.216×10−20, Ω4=1.858×10−20, Ω6=0.623×10−20 cm2. The spectroscopic parameters of this crystal such as the oscillator strengths, radiative transition probabilities, radiative lifetime as well as the branching ratios were calculated. Also, room temperature luminescence decay curve in correspondence with the emission line 4F9/26H13/2 centered at 575 nm was measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号