首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
共沉淀法制备NaYF4 : Tm3+,Yb3+的上转换发光   总被引:1,自引:3,他引:1       下载免费PDF全文
通过共沉淀法制备Tm3+和Yb3+掺杂的NaYF4上转换发光材料。其中Tm3+和Yb3+的摩尔分数分别为0.01%,0.1%。在室温下测试了NaYF4 : Tm3+,Yb3+材料在300~1 100 nm的吸收光谱。利用X射线衍射(XRD),扫描电镜(SEM)测试了合成材料的物相结构和微观形貌。结果表明:NaYF4 : Tm3+,Yb3+材料为六方相晶体,其颗粒大小约为50~60 nm,产物结晶良好,含有少量杂相。在798 nm近红外光激发下,测试了样品的上转换发光光谱。观察到了蓝、绿色上转换发光。讨论了上转换发光的可能机理,蓝光主要来源于Tm3+的激发态1G4到基态3H6的跃迁,绿光来源于Tm3+1D23H5跃迁。  相似文献   

2.
以EDTA为络合剂,用水热法合成了Er3+,Tm3+和Yb3+共掺杂的NaYF4纳米晶。XRD和TEM的结果表明:粒径约为30 nm,属于六方晶系。在980 nm半导体激光器激发下,研究了不同Er3+离子掺杂浓度对Tm3+和Er3+离子上转换发光性能的影响,光强与泵浦功率的双对数曲线表明,474,525,539,650 nm的发射均属于双光子过程,408 nm的发射属于三光子过程。讨论了样品的协作敏化和声子辅助共振能量传递的上转换发光机制。  相似文献   

3.
利用高温固相法制备了Tm3+/Yb3+共掺杂的氟氧化物玻璃和玻璃陶瓷材料,在980 nm的激光激发下,样品发射出明亮的蓝色上转换荧光。通过对玻璃和玻璃陶瓷样品的对比,发现Tm3+离子和Yb3+离子之间存在着Tm3+(3H4)→Yb3+(2F5/2)的反向能量传输通道,并且与晶场有较强的依赖关系。分析了在玻璃和玻璃陶瓷中蓝色上转换发光过程,随着敏化剂Yb3+浓度的增加,在玻璃中正向和反向能量传递的竞争作用使得Tm3+离子在Yb3+离子的最佳浓度时上转换发光最强;而在玻璃陶瓷中, Tm3+离子的上转换发光始终随着Yb3+离子的浓度增加而增强。  相似文献   

4.
采用燃烧法制备了ZnMoO4∶Tb3+绿色荧光粉。XRD实验结果表明,样品在700 ℃基本形成单一的ZnMoO4相,属三斜晶系,而Tb3+的掺入基本不影响ZnMoO4的结构;TG-DTA研究结果表明,样品在680 ℃基本形成ZnMoO4相;IR结果表明,在700 ℃燃烧后,没有出现其他有机物的峰,说明柠檬酸已完全分解,掺杂的少量Tb3+已完全溶入了ZnMoO4的晶格中,形成ZnMoO4∶Tb3+固溶体;SEM结果表明,700,750,800 ℃制备的样品随温度的提高颗粒的分散度逐渐提高;激发光谱的主要变化是随着ZnMoO4∶Tb3+的生成而产生出主峰为488 nm处的强峰;发射光谱结果表明,随着ZnMoO4∶Tb3+的形成,最佳激发波长488 nm下,出现了很强的544 nm处的发射峰,对应于Tb3+的5D4→7F5跃迁。通过ZnMoO4中掺杂Tb3+,获得了一种有潜在应用价值的绿色荧光粉。  相似文献   

5.
姜晓岚  吕树臣 《发光学报》2009,30(5):640-643
利用共沉淀法制备了纳米CaO : Eu3+发光粉体。并对不同掺杂浓度和不同煅烧温度下所制备的CaO : Eu3+粉体进行室温发光性质的研究。在室温下观测到CaO : Eu3+样品具有较强的Eu3+离子特征发射。通过对不同煅烧温度下样品发射谱的对比,发现样品在591 nm和610 nm处的发射峰积分强度比随着煅烧温度的升高而降低,说明在不同的煅烧温度下,Eu3+占据了两种不同的格位。对样品强发射峰进行监测,可观测到样品中的O2-和Eu3+离子之间形成的电荷迁移态。通过对比不同掺杂浓度下Eu3+离子发射光谱,发现将Eu3+掺杂到CaO基质中的适宜浓度为4%。  相似文献   

6.
刘林峰  吕树臣 《发光学报》2009,30(2):228-232
利用共沉淀法制备了纳米晶Gd2O3 : Eu3+发光粉体。 在不同掺杂浓度、不同煅烧温度的系列样品中,均观测到Eu3+离子的特征发射。样品的晶相与发射性质的研究表明:所制备的样品经800~1 300 ℃热处理后,晶相为立方相,1 400 ℃时开始向单斜相转变。荧光强度与Eu3+离子掺杂浓度关系研究表明:在不同掺杂浓度中,Eu3+离子浓度为4%时其相对发射强度最强。在三个不同的煅烧温度中,经800 ℃煅烧的样品其发光效果最好。此外还观察到电荷转移激发态以及基质、Gd3+与Eu3+之间的能量传递。激发谱包含三部分,即电荷转移带、Eu3+的4f内壳层电子跃迁和Gd3+的激发谱。  相似文献   

7.
合成了Eu3+,Tm3+和Yb3+掺杂的NaYF4材料.360 nm光激发呈蓝色发光,峰值位于452 nm,对应Tm3+的1D2→3F4跃迁;395 nm光激发旱橙色发光,峰值位于591 nm,对应Eu3+的5D0→7F1跃迁;409 nml光激发呈红色发光,峰值位于613 nm,对应Eu3+的5D0→7F2跃迁;980 nm光激发呈蓝色和红色发光,发光峰位于474和646 nm.蓝光来源Tm3+的1G4→3H6跃迁,红光来源Tm3+的1G4→3F4跃迁.在双对数曲线中,蓝光474 nm和红光646 nm的斜率分别为2.1和2.4,在980 nm光激发下,蓝光和红光发射都是双光子过程.还研究了材料的吸收光谱,并利用X射线衍射,扫描电镜测试了材料的物相结构和微观彤貌.结果表明:NaYF4:Eu3+,Tm3+,Yb3+材料具有较规则的六方相结构,结品良好.  相似文献   

8.
采用高温固相法合成了不同Yb3+和Er3+掺杂浓度的BaIn6Y2O13上转换发光材料。XRD数据显示,所合成的BaIn6Y2O13∶Yb3+, Er3+属于六方晶系,引入激活剂并没有改变基质的晶体结构。利用971 nm半导体激光器激发样品,测量样品在不同激发光密度下上转换发射光谱和发射光功率,计算了上转换能量效率。数据表明在激发密度不变,激活剂浓度增加时,上转换光绿红比减小;激活剂浓度不变激发光密度增加时,发射光绿红比增大。分析表明是由于Er3+之间的交叉弛豫增强导致绿红比随激活剂掺杂浓度的增加而减小;Yb3+和Er3+之间的能量传递和Er3+的激发态吸收增强导致绿红比随激发密度的增加而增大。随着激发功率增加, 在较低激发功率时, 上转换绿光发射强度与激发功率的二次方成正比; 在较高激发功率时, 上转换绿光发射强度与激发功率的一次方成正比, 与报道的结果一致。能量效率存在极大值, 分别为0.38%(Yb3+掺杂浓度3%, Er3+掺杂浓度1%)和0.06%(Yb3+掺杂浓度9%, Er3+掺杂浓度3%), 产生极值的一个原因是4I13/2亚稳态能级寿命较长, 聚集了大量电子, 使基态电子急剧减少, 导致上转换泵浦效率降低。  相似文献   

9.
杨平  田莲花  田荣 《发光学报》2009,30(6):768-772
采用高温固相法制备了Eu3+离子激活的Ca9R(VO4)7(R = Y, La, Gd)红色发光粉,并利用荧光光谱对发光粉的特性进行研究。激发光谱中,Ca9Y(VO4)7 : Eu3+ , Ca9La(VO4)7 : Eu3+和Ca9Gd(VO4)7 : Eu3+都有两个宽的VO3-4激发带和Eu3+的特征激发峰。发射光谱中,在Ca9Y(VO4)7 : Eu3+ 和Ca9La(VO4)7 : Eu3+中的350~550 nm范围内出现VO3-4的发射带,而在Ca9Gd(VO4)7 : Eu3+中却没有观察到VO3-4的发射。在这三种发光粉中,Ca9Gd(VO4)7 : Eu3+的发光强度远远高于其它两种,这是由于Gd3+的存在有效地使能量通过Gd3+ →VO3-4 → Eu3+及Gd3+ → Eu3+的两种方式进行能量传递,从而提高了Eu3+发光效率。  相似文献   

10.
采用高温固相法合成了Ba3SiO4Cl2∶Eu2+蓝绿色荧光粉,并测量了材料的光谱特性等。研究结果显示,在365 nm近紫外光激发下,Ba3SiO4Cl2∶Eu2+材料呈双峰宽带发射,主发射峰分别为445和510 nm;分别监测这两个发射峰,所得激发光谱覆盖范围为250~450 nm,主激发峰分别为350和400 nm,但光谱分布不同,说明两发射峰来源于不同的Eu2+发光中心。研究了Eu2+掺杂浓度对材料光谱性能的影响,发现随Eu2+掺杂量的增大,445 nm发射峰的强度增加,而510 nm发射峰的强度减弱。采用去离子水清洗Ba3SiO4Cl2∶Eu2+材料后,445 nm发射峰消失,只保留了510 nm发射峰,且发射峰的强度明显减弱。  相似文献   

11.
红色LiMBO3 : Re3+(Re=Eu,Sm) 发光材料的特性   总被引:1,自引:1,他引:1       下载免费PDF全文
采用固相法制备了红色LiM(M=Ca, Sr, Ba)BO3 : Re3+(Re=Eu, Sm)发光材料,研究了材料的发光性能。研究发现LiM(M=Ca, Sr, Ba)BO3 : Eu3+材料呈现多峰发射,最强发射分别位于610,615,613 nm处,分别监测这三个最强峰,所得激发光谱峰值位于369,400,470 nm。LiM(M=Ca, Sr, Ba)BO3 : Sm3+材料也呈多峰发射,分别对应Sm3+4G5/26H5/24G5/26H7/24G5/26H9/2跃迁发射;分别监测602,599,597 nm三个最强发射峰,所得激发光谱峰值位于374,405 nm。研究了激活剂浓度对材料发射强度的影响,结果随激活剂浓度的增大,发射强度先增强后减弱,即,存在浓度猝灭效应。实验表明,加入电荷补偿剂Li+、Na+或K+均可提高LiM(M=Ca, Sr, Ba)BO3 : Re3+(Re=Eu, Sm)材料的发射强度。  相似文献   

12.
合成了六种高氯酸掺杂稀土(Dy3+,Tm3+)与二苯甲酰基甲基亚砜的配合物。经元素分析、稀土络合滴 定、摩尔电导率及差热-热重分析,表明配合物组成为 (Dyx,Tmy)L5(ClO4)3·3H2O(x : y=1.000 : 0.000,0.995 : 0.005,0.990 : 0.010,0.950 : 0.050,0.900 : 0.100,0.800 : 0.200;L=C6H5COCH2SOCH2COC6H5)。并详细讨论了六种稀土配合物的荧光光谱。从配合物的荧光光谱图可以看出,Tm3+对Dy3+的荧光有增强效应。这可能 是因为在惰性稀土离子Tm3+与活性稀土离子Dy3+之间有能量的传递。而且当Dy3+与Tm3+的量比为0.950 : 0.050时,掺杂配合物表现出最佳的发光性质。另外,Tm3+对577.4 nm处4F9/26H13/2 峰的荧光敏化作用的程度高于对487 nm处4F9/26H15/2 峰的荧光敏化作用。4F9/26H15/2 峰的荧光强度增强了212%,而4F9/26H13/2峰的荧光强度增强了264%。所以,Dy3+离子的两个特征峰的发射强度比趋近于1,为1.078,使得配合物在紫外灯下发白色荧光。有可能成为一类发白色荧光的发光材料。  相似文献   

13.
采用固相法制备了LiM(M=Ca, Sr, Ba)BO3 : Dy3+材料,并研究了材料的发光特性。LiM(M=Ca, Sr, Ba)BO3 : Dy3+材料的发射光谱均呈多峰发射,对应于Ca,Sr,Ba,其主发射峰分别是Dy3+4F9/26H15/2(484,486,486 nm),6H13/2(577,578,578 nm)和6H11/2(668,668,666 nm)跃迁。监测黄色发射峰时,所得激发光 谱峰值位置相同,主激发峰分别为331,368, 397,433,462,478 nm,对应Dy3+6H15/24D7/2,6P7/2,6M21/2,4G11/2,4I15/26F9/2跃迁。研究了敏化剂Ce3+及电荷补偿剂Li+、Na+和K+对LiM(M=Ca, Sr, Ba)BO3 : Dy3+材料发光强度的影响。结果显示:加入敏化剂Ce3+提高了材料的发光强度,发光强度最大处对应的Ce3+浓度为3%;加入电荷补偿剂Li+、Na+和K+后,材料的发光强度也得到了明显提高,但发光强度最大处对应的Li+、Na+和K+浓度不同,依次为4%、4%和3%。  相似文献   

14.
徐晶  夏威  邓华  边福强  肖志国 《发光学报》2009,30(5):617-623
研究了Sr2-xBaxSiO4 : Eu2+ 荧光材料作为白光LED发光体的可行性和应用特性。采用高温固相法制备了Sr2-xBaxSiO4 : Eu2+ 材料系列样品,对样品的成分配比、阴离子掺杂、合成温度和时间进行了系统实验,利用XRD、SEM、光谱测试及封装测试等手段对样品的组成、结构、形貌特征及应用性能进行了表征。研究表明Sr2-xBaxSiO4 : Eu2+ 荧光材料具有激发范围宽(300~500 nm)、发射范围宽(500~600 nm)的特点。通过控制碱土金属的比例可以精确控制材料的发射波长,在Ba掺杂范围0≤x<0.5内可以获得550~560 nm的发射,与YAG材料相比在光谱上增加了红色成分。通过引入恰当助熔成分进行阴离子掺杂,精确控制烧结工艺等手段极大提高了550~560 nm发射的发光强度和光转换效率。封装应用和测试证明,本研究优化制备的高性能Sr2-xBaxSiO4 ∶ Eu2+ 荧光材料的光转换效率普遍可达到YAG材料的95%,在显色指数、色温和色纯度方面也优于或相当于YAG材料,并且具有较好的芯片适应性和较多的红色成分,是较为理想的应用于白光LED的荧光材料,特别适合于暖白光LED的制备。  相似文献   

15.
采用高温固相法制备了Sr3SiO5 : Eu2+黄色发光材料,研究了Eu2+浓度及共激活剂等对材料发光性能的影响。结果显示,随Eu2+浓度的增大,Sr3SiO5 : Eu2+材料发射强度先增强后减弱,即存在浓度猝灭效应,根据Dexter理论,其浓度猝灭机理为电偶极-偶极相互作用。掺入共激活剂Yb、Tm均能提高材料的发射强度。利用InGaN管芯分别激发Sr2.98Eu0.01Tm0.01SiO5和Sr2.98Eu0.01Yb0.01SiO5材料,获得了很好的白光发射。  相似文献   

16.
采用高温熔融法制备了两系列不同掺杂比的Er3+/Tm3+共掺的碲酸盐玻璃,测试了样品的吸收光谱和在980 nm LD激发下的发光光谱、上转换发光光谱及发光寿命。讨论了Er3+与Tm3+掺杂浓度对样品光谱性质的影响,Tm3+离子的掺入会减弱Er3+的1.53 μm发光强度,但通过共振能量传递可以获得Tm3+的1.8 μm发光,并随着Tm3+离子浓度的增加而增强。同时表明Tm3+离子的增加会减弱Er3+离子在528 nm和545 nm附近的上转换绿光强度,而上转换红光出现了先增强后减弱的现象。研究了Er3+/Tm3+共掺杂碲酸盐玻璃的能量传递机制与传递效率,分析了Tm3+/Er3+离子掺杂浓度比对上转换发光的影响。  相似文献   

17.
测量了一系列Yb3+摩尔分数(0.125…1)在Yb3+ ∶ GdAl3(BO3)4 晶体(Yb ∶ GAB)的室温偏振吸收光谱、发射光谱。为了揭示和消除辐射陷阱对Yb3+光谱性质的影响,分别测量了块状、粉末和稀释粉末样品的发射光谱。为了比较不同摩尔分数和不同方式辐射陷阱的影响,采用倒易法(RM)和Fuchtbauer-Ladenburg公式(FL)来计算发射截面。实验结果表明:随着Yb3+离子摩尔分数的增加,辐射陷阱效应对发射光谱的影响越来越严重。在发射光谱中,随着Yb3+离子摩尔分数的增加,短波段发射变弱,长波段发射变强,因此,提出了Yb ∶ GAB 晶体中发射光谱的重心波长移动 Δλ与 Yb3+离子摩尔分数之间的经验关系来定量分析Yb3+离子摩尔分数变化对辐射陷阱的影响;采用稀释法能够很好消除辐射陷阱对发射光谱的影响,而粉末法对于低Yb3+浓度的样品能够比较好地消除辐射陷阱的影响,块状样品直接测量很难消除辐射陷阱的影响。  相似文献   

18.
采用高温固相法按化学式ZnxMg(1-x)Ga2O4∶Cr3+(x=0,0.2,0.6,0.8,1.0)配比原料制备了一系列红色长余辉发光材料。X射线衍射(XRD)分析表明样品物相均为面心立方结构。光致发光特性表明样品的红光发射峰均由以Cr3+为发光中心的电子2E—4A2跃迁所致,Cr3+的激发带与基质发射带之间有大面积重叠,两者间存在有效的能量传递。余辉衰减曲线与热释光谱分析表明,不同Zn掺入量的样品余辉衰减快慢不同,是由于其中存在的陷阱能级深度不同,且陷阱能级越深,其余辉时间越长。  相似文献   

19.
采用高温固相法制备了AlF3-YbF3∶Er3+上转换荧光粉,分析了Er3+掺杂浓度对其发光强度的影响。通过X-ray diffraction (XRD)对样品物相分析。利用荧光发射光谱研究了该荧光粉的上转换发光性能,进而提出其上转换能量传递机理,研究结果表明:在980 nm半导体激光器激发下,以AlF3-YbF3为基质,当Er3+的掺杂浓度为0.7 mol%时,该荧光粉的红光发射强度最强;通过上转换发光强度与泵浦电流关系曲线的拟合,表明AlF3-YbF3∶Er3+上转换荧光粉的红光上转换过程为双光子过程。  相似文献   

20.
采用“一锅”和直接混合两种制备过程,制得了NaYF4∶Yb, Er/氧化石墨烯(rGO)和SiO2包覆NaYF4∶Yb, Er/rGO两系列纳米复合材料。各种测试结果表明,NaYF4∶Yb, Er是以α型立方结构和纳米粒子形状存在于复合材料中,粒径主要在30~70 nm间,而rGO则较好地分散在其中,但“一锅”法制得的rGO呈现更好的分散性。Raman光谱证实,在这两种纳米材料之间存在表面耦合相互作用,且随着rGO相对含量增大,它们之间接触面积逐渐增多,相互作用也逐渐增强。上转换发光测试结果表明,rGO具有很好的发光猝灭效应和光限幅现象,尤其是对NaYF4∶Yb, Er的红光带影响更加显著。随着rGO相对含量逐渐增加,红光带发光强度逐渐降低,而绿光带变化不大。对于使用不同方法制备的样品,在具有相似含量情况下,由于团聚rGO具有更强的吸光作用,SiO2包覆样品的红光带发光强度受到rGO影响更大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号