首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapidly frozen aqueous solutions containing variable amounts of dissolved formaldehyde (0.1, 5, 7, 10, 15, and 20 mol %) have been analyzed by micro-Raman spectroscopy at ambient pressure and low temperature. The importance of the formladehyde-ice system has been repeatedly quoted in various contexts, such as atmospheric and snowpack chemistry and interstellar and cometary ices. Understanding and characterizing the effects of freezing and the interactions of formaldehyde with ice are therefore of relevant interest. In this study, the distinct vibrational signatures of the oligomers present in the solution and in the frozen ice mixtures have been identified in the 120-4000 cm(-1) spectral range. From the subtle changes of the bands assigned to the CO and CH group frequencies, at least two distinct crystalline phases (pI and pII) are found to coexist with ice at different temperatures. Depending on the cooling-rewarming protocol, pI is found to crystallize in the 163-213 K temperature range. Above approximately 213 K, pI gets transformed irreversibly into pII which is stable up to approximately 234 K. pII is found to interact more strongly with ice than pI, as revealed, for example, by the drop in frequency of the bands assigned to the O-H stretching as pI transforms into pII. It is suggested that pII consists of a hydrogen-bonded network of oligomers and water molecules. On the other hand, it is suggested that the oligomers mainly present in pI interact through weak forces with the surrounding water molecules.  相似文献   

2.
The ability of water-soluble, globular proteins to tune surfactant/oil/water self-assemblies has potential for the formation of biocompatible microemulsions and also plays a role in protein function at biological interfaces. In this work, we examined the effect of the protein alpha-lactalbumin on Aerosol-OT (AOT) phase structures in equivolume mixtures of oil and 0.1 M brine. In this pseudo-ternary system, surfactants are free to move to either oil or water phase to adopt phase structures close to the spontaneous curvature of the surfactants. Using small-angle X-ray scattering, we observed that addition of this protein changed the spontaneous curvature of the surfactant monolayer substantially. In the absence of protein, AOT adopted a negative spontaneous curvature to form spherical w/o microemulsion droplets. When less than 1 wt % of alpha-lactalbumin was added into the system, the w/o droplets became nonspherical and larger in volume, corresponding to an increase in water uptake into the droplets. As the protein-to-surfactant ratio increased, protein, surfactant, and oil increasingly partitioned toward the aqueous phase. There the protein triggered the formation of o/w microemulsions with a positive spontaneous curvature. These protein-containing structures exhibited significant interparticle attraction. We also compared the influence of two oil types, isooctane and cyclohexane, on the protein/surfactant interactions. We propose that the more negative natural curvature of the AOT/cyclohexane monolayer in the absence of protein prevented protein incorporation within organic phase structures and consequently pushed the system self-assembly toward aqueous aggregate formation.  相似文献   

3.
Proton-conducting membranes of poly(vinylidene fluoride), PVDF, grafted with styrene and thereafter sulfonated, were investigated by Raman spectroscopy. The depth and surface distribution of polystyrene grafts and crosslinker, as well as the sulfonation efficiency, were determined by using confocal micro-Raman spectroscopy. Highly grafted samples show homogeneous distribution of grafted material and homogeneous sulfonation. Depth profiles reveal uneven graft distribution for samples with low and intermediate degrees of grafting. In crosslinked samples, the crosslinker concentration in the interior of the film is found to be roughly 50% of the surface concentration. In contrast to what has previously been reported, the sulfonation efficiency is poor at low graft levels and is further inhibited by the presence of divinyl benzene, DVB, as crosslinker. At degrees of grafting above ∼ 60%, the crosslinker does not affect the sulfonation efficiency and a level of 70–90% sulfonation is reached. The matrix polymer structure is found to be largely retained after irradiation, grafting, and sulfonation. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3317–3327, 1999  相似文献   

4.
The complex relative dieletric permittivity of aerosol-OT(AOT)/water/cyclohexane solutions has been measured within the frequency range 5 kHz-10 GHz. The investigated solutions were of oil-rich type with varying AOT- and water content. A marked dielectric relaxation has been found. The dielectric increment as well as the conductivity steeply increase with the water content, while the relaxation time decreases. Theoretical models of heterogeneous dielectrics consisting of polar, highly conductive inclusions in a nonpolar solvent with low conductivity have been applied to the results, allowing conclusions with regard to the inclusions, shape and conductivity.  相似文献   

5.
Micro-Raman investigations of mixed gas hydrates   总被引:2,自引:0,他引:2  
We report laser Raman spectroscopic measurements on mixed hydrates (clathrates), with guest molecules tetrahydrofuran (THF) and methane (CH4), at ambient pressure and at temperatures from 175 to 280 K. Gas hydrates were synthesized with different concentrations of THF ranging from 5.88 to 1.46 mol%. In all cases THF molecules occupied the large cages of sII hydrate. The present studies demonstrate formation of sII clathrates with CH4 molecules occupying unfilled cages for concentrations of THF ranging from 5.88 to 2.95 mol%. The Raman spectral signature of hydrates with 1.46 mol% THF are distinctly different; hydrate growth was non-uniform and structural transformation occurred from sII to sI prior to clathrate melting.  相似文献   

6.
In this work, we present results from molecular dynamics simulations on the single-molecule relaxation of water within reverse micelles (RMs) of different sizes formed by the surfactant aerosol-OT (AOT, sodium bis(2-ethylhexyl)sulfosuccinate) in isooctane. Results are presented for RM water content w(0) = [H(2)O]/[AOT] in the range from 2.0 to 7.5. We show that translational diffusion of water within the RM can, to a good approximation, be decoupled from the translation of the RM through the isooctane solvent. Water translational mobility within the RM is restricted by the water pool dimensions, and thus, the water mean-squared displacements (MSDs) level off in time. Comparison with models of diffusion in confined geometries shows that a version of the Gaussian confinement model with a biexponential decay of correlations provides a good fit to the MSDs, while a model of free diffusion within a sphere agrees less well with simulation results. We find that the local diffusivity is considerably reduced in the interfacial region, especially as w(0) decreases. Molecular orientational relaxation is monitored by examining the behavior of OH and dipole vectors. For both vectors, orientational relaxation slows down close to the interface and as w(0) decreases. For the OH vector, reorientation is strongly affected by the presence of charged species at the RM interface and these effects are especially pronounced for water molecules hydrogen-bonded to surfactant sites that serve as hydrogen-bond acceptors. For the dipole vector, orientational relaxation near the interface slows down more than that for the OH vector due mainly to the influence of ion-dipole interactions with the sodium counterions. We investigate water OH and dipole reorientation mechanisms by studying the w(0) and interfacial shell dependence of orientational time correlations for different Legendre polynomial orders.  相似文献   

7.
An atomistic molecular dynamics (MD) simulation has been carried out to investigate the structural and dynamical properties of a monolayer of the anionic surfactant sodium bis(2-ethyl-1-hexyl) sulfosuccinate (aerosol-OT or AOT) adsorbed at the air/water interface. The simulation is performed at room temperature and at a surface coverage corresponding to that at its critical micelle concentration (78 A(2)/molecule). The estimated thickness of the adsorbed layer is in good agreement with neutron reflection data. The study shows that the surfactants exhibit diffusive motion in the plane of the interface. It is observed that the surfactant monolayer has a strong influence in restricting both the translational and reorientational motions of the water molecules close to the interface. A drastic difference in the dipolar reorientational motion of water molecules in the aqueous layer is observed with a small variation of the distance from the surfactant headgroups. It has been observed that the water molecules in the first hydration layer (region 1) form strong hydrogen bonds with surfactant headgoups. This results in the slower structural relaxation of water-water hydrogen bonds in the first hydration layer compared to that in the pure bulk water. Most interestingly, we notice that the water molecules present in the layer immediately after the first hydration layer form weaker hydrogen bonds and thus relax faster than even pure bulk water.  相似文献   

8.
Densities and viscosities of sodium bis(2-ethylhexyl) sulfosuccinate (AOT in-heptane system containing light and heavy water, as a function of the molar ratio R (R=[H2O or D2O]/[AOT]) were measured at 0, 5, 25 and 40°C. At low R values, the apparent molar volume of deuterium oxide is smaller than that of light water. The difference is related to the strength of the hydrogen bonding H2O and D2O. The viscosities of both H2O-AOT-n-heptane and D2O-AOT-n-heptane systems were explained in terms of intermicellar interactions mainly governed by hydration of the head groups of AOT.  相似文献   

9.
10.
A new compound having a 2,3,4,5-tetraphenylsilole derivative on the center silicon of Dumbbell(1)6Gb3; Silole-Dumbbell(1)6Gb3 (1) was previously reported. It was found that 1 exhibited strongly increased fluorescence both in water and in a 96% acetone/water mixed solvent. The physical behavior of 1 in water and in the 96% acetone/water mixed solvent was investigated, and analyses including fluorescence quantum yields, dynamic-light-scattering (DLS), atomic-force-microscopy (AFM), and fluorescence microscopy were carried out. It was clarified that 1 dynamically formed different types of aggregates in water and in higher acetone concentrations to yield high aggregation-induced emission (AIE) effects due to the formation of micelle-like particles in water and inversion-type micelles in the acetone/water mixed solvent, respectively.  相似文献   

11.
The effect of lithium ion on the ordering of water in water-saturated nitrobenzene has been probed by 2H NMR, diffusion ordered spectroscopy and neutron scattering. It was shown that increased water concentration in LiClO4/wet nitrobenzene results in the formation of a metastable solvatomer with mixed water and nitrobenzene character, Li+(W/NB). This species is shown to decay over hours to two solvatomers, one dominated by nitrobenzene Li+(NB) and the other dominated by water Li+(W). To confirm the assignment of these solvation states, diffusion ordered deuterium NMR spectroscopy has been used to elucidate the hydrodynamic radii of these solvatomers. Neutron scattering yields vibrational spectroscopy information that shows how addition of lithium to the nitrobenzene/water system results in relatively slow self-organization of the water environment (hours).  相似文献   

12.
Among fluoroquinolone antibiotics, ofloxacin (OFL) and norfloxacin (NOR) have piperazinyl groups but flumequine (FLU) does not have this substitutent. The emission spectra of OFL and NOR are strong, broad structureless bands with large Stokes' shifts in water but the emission intensities are very weak in organic solvents. Thus we find that these compounds exist as different chemical species in various solvents. A continuous red shift in the emission bands for OFL and NOR is observed as the water concentration within the aerosol-OT (AOT; sodium 1,4-bis[2-ethylhexyl]sulfosuccinate) micelle increases or temperature of this solution rises. From the fluorescence anisotropy measurements of OFL and NOR, we assume the intramolecular charge transfer after excitation from the nitrogen of the piperazinyl group to the keto oxygen. Theoretical calculations further support this observation. Multifrequency phase and modulation experiments and time-resolved emission spectra clearly show the occurrence of intramolecular charge transfer and the subsequent nanosecond water reorganization around OFL or NOR in the AOT micelle. Upon increasing the water concentration within the AOT micelle, the relaxation rate increases because of the large amount of free water. The emission spectra of FLU do not exhibit any significant response to the physical properties of their environment.  相似文献   

13.
Raman micro-spectroscopy was chosen for analysis and identification of the pigments present in four nineteenth-century hand-coloured lithographs, as this technique has several advantages over others for this purpose. The possibility of performing completely non-destructive analysis without any sampling is probably one of its most favourable qualities for art analysis. Raman spectroscopy can also be used to determine some pigments that cannot be detected using FTIR, such as vermilion, carbon blacks, cadmium pigments, etc. Among others, Prussian blue, ultramarine blue, carbon black, chrome yellow, yellow ochre, red lead, red iron oxide, burnt Sienna, indigo blue, chrome orange, phthalocyanine green, and some other organic pigments, were determined in the specimens. The results obtained have led to doubts about the age of the lithographs.  相似文献   

14.
The thermodynamics of β-cyclodextrin dehydration is investigated, by parallel DSC/TG experiments, on both fully and partially hydrated samples. The apparent dehydration enthalpies per mole of water are impossibly high and this fact suggests that another phenomenon, in addition to the rupture of the β-cyclodextrin/H2O hydrogen bonds, contributes to the peak area. All the experimental evidence agrees with an ‘interaction model’ which assumes that deydration is accompanied by a slow and reversible rearrangement of the β-cyclodextrin structure.  相似文献   

15.
Nanostructured silver sulfide powder with an average particle size of about 45 nm, an acanthite α-Ag2S monoclinic structure (space group P21/c), and nonstoichiometric composition Ag1.93S has been synthesized by the chemical deposition method. The silver sulfide nanopowder has been studied by Raman spectroscopy. According to the Raman scattering data, heating the nanopowder with high-power laser radiation in air leads to photoinduced decomposition of the Ag1.93S nanopowder to give silver metal. The Raman spectrum of the silver sulfide nanopowder shows a series of bands in the low-frequency range from 90 to 260 cm–1 associated with vibrations of silver atoms, Ag–S bonds, and symmetric Ag–S–Ag longitudinal modes. Raman spectroscopy confirmed an acanthite monoclinic structure of synthesized silver sulfide nanopowder.  相似文献   

16.
The dynamics of hydration water play a key role in many biological processes. The activity and function of proteins are strongly affected by the presence of water, which interacts primarily by means of hydrogen bonding. These interactions are examined in this work by a comparison of neutron vibrational spectra (Inelastic Neutron Scattering, INS) of dry lysozyme and hydrated lysozyme at h = 0.7 (g of H2O/g of protein) with those of a lysozyme/water mixture at the same hydration value in the presence of the glass-forming bioprotectant trehalose. A difference spectrum, obtained by subtracting the dry lysozyme spectrum from that of the lysozyme/water mixture, yields the hydration water spectrum which is compared to the INS spectra of different kinds of ice in order to determine the changes induced by lysozyme on the hydrogen-bonded network of water. An additional comparison is performed by using a double-difference spectrum obtained by subtracting both the dry lysozyme and the trehalose spectra from the lysozyme/trehalose/water ternary spectrum. The effects of the mutual interactions among the three components, i.e. protein, disaccharide and water, are determined by comparison of the spectra of the dry systems (lysozyme, trehalose) with the difference spectra obtained from subtraction of the dry systems from the binary systems. It is concluded that the interfacial water more strongly affects the intermolecular mode region at low frequencies, whereas the vibrational spectra at high frequencies are more influenced by lysozyme and trehalose.  相似文献   

17.
The ternary system sodium-dodecylsulphate (SLS)/decanol/water has been investigated at three different water contents and varying ratios of cosurfactant to surfactant by means of polarized optical microscopy,2H-NMR quadrupole splittings and small angle x-ray scattering. Upon addition of decanol a hexagonal phase transforms into a lamellar phase. For the highest water content of 0.65 no intermediate two-phase regions are detected but nematic phases are formed between. The lamellar phase at low cosurfactant content is very sensitive to changes of temperature and seems to be a so-called defective one with curved interfaces. From the scaling behavior it is concluded that the building units seem to be ribbons of increasing width on addition of cosurfactant or amphiphilic substance. By reaching a decanol mole fraction of 0.4 a classical lamellar phase with well-known behavior is formed. During these transformations the position of the first diffraction maximum changes gradually irrespective of phase transitions. The maximum mole fraction of cosurfactant the lamellar phase of our system can incorporate is 0.77.  相似文献   

18.
Titanium oxide/carbon nanotubes-based nanocomposites (TiO2/CNTs, prepared by sol-gel method, and 2%Pt/TiO2/CNTs, obtained by wetness impregnation of the TiO2/CNTs base material with a solution of platinum acetylacetonate) have been recently used as active layer in hydrogen sensing devices at near room temperature, obtaining quite different responsiveness. The microstructure of these hybrid materials is here systematically investigated by micro-Raman spectroscopy at 2.41 eV. The results show that regardless of the nominal C/Ti molar ratio (3.6 or 17.0) only the anatase phase of titania is formed. Theoretical calculations demonstrate that phonon confinement is fully responsible for the large blue-shift (∼10 cm−1) and broadening (∼20 cm−1) of the lowest-frequency Raman mode with respect to bulk anatase. The average size (4.3-5.0 nm) of TiO2 crystallites, resulting from Raman spectra fitting, is in excellent agreement with those inferred from transmission electron microscopy and X-ray diffraction measurements.  相似文献   

19.
The phase diagrams of water-cyclohexane containing 5, 10, and 20 wt% sodium 1,2-bis(2-ethylhexyloxycarbonyl)-1-ethanesulfonate (Aerosol OT, AOT) as a function of temperature were studied. There is the water phase in which AOT is dissolved and a large amount of oil is solubilized at higher temperature, and the oil phase in which AOT is dissolved and a large amount of water is solubilized at lower temperature. It is evident from the phase behavior that the hydrophile-lipophile property of AOT is well balanced. Accordingly, the phase diagram and properties of AOT solution are affected rather sensitively by the addition of a small amount of hydrophilic or lipophilic additive or by temperature. Careful elimination of inorganic salts also influences markedly the solution properties of AOT. Thus, the addition or removal of known amounts of inorganic salts, such as Na2SO4 is also very important to control the solution properties related to practical applications. In this context phase diagrams of both carefully purified and commercial AOT with or without additives have been determined.  相似文献   

20.
Two intermediate phases have been found in the concentration range between the hexagonal and concentrated cubic phases in the binary system dodecyltrimethylammonium chloride (C12TACl)/water. This region in the phase diagram was studied by means of 2H NMR of specifically deuteriated surfactant as well as by 14N NMR. Below 35°C, an intermediate phase with non-cylindrical aggregates is formed in the concentration range 80 to 84 wt% surfactant, X-ray data from this phase can be indexed to a centred rectangular lattice. In addition, there is a uniaxial phase with a reduced quadrupole splitting. The aggregates comprising the centred rectangular phase were analysed by means of bandshape analysis of the NMR spectra and by small angle X-ray scattering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号