首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode (GCE) was simply and conveniently fabricated. The electrochemical properties of paracetamol (PCT) at the prepared modified electrode were investigated by cyclic voltammetry (CV). Based on this, an ultrasensitive and rapid electrochemical method was developed for the determination of PCT. The result indicated that the oxidation of PCT was greatly improved at the MWNTs-modified GC (MWNTs/GC) electrode as compared with the bare GC electrode, with relatively high sensitivity, stability and life time. Good linear relationship between the oxidation peak current and the PCT concentration in the range of 1 × 10−7 to 1 × 10−3 M (r = 0.996) was obtained in phosphate buffer solution (PBS) with pH 6.5, the detection limit was 2 × 10−8 M (S/N = 3) by use of modified electrode. The proposed method was successfully applied to the PCT determination in tablets.  相似文献   

2.
In this paper, a novel biosensor was prepared by immobilizing glucose oxidase (GOx) on carbon nanotube-gold-titania nanocomposites (CNT/Au/TiO2) modified glassy carbon electrode (GCE). SEM was initially used to investigate the surface morphology of CNT/Au/TiO2 nanocomposites modified GCE, indicating the formation of the nano-porous structure which could readily facilitate the attachment of GOx on the electrode surface. Cyclic voltammogram (CV) and electrochemical impedance spectrum (EIS) were further utilized to explore relevant electrochemical activity on CNT]Au/TiO2 nanocomposites modified GCE. The observations demonstrated that the immobilized GOx could efficiently execute its bioelectrocatalytic activity for the oxidation of glucose. The biosensor exhibited a wider linearity range from 0.1 mmol L-1 to 8 mmol L^-1 glucose with a detection limit of 0.077 mmol L^- 1.  相似文献   

3.
This paper reports a surface molecular self-assembly strategy for imprinting triazophos in the electropolymerised poly(aminthiophenol) (PATP) membranes at the surface of gold nanoparticle (AuNP)/carbon nanotube (CNT) composites modified glassy (GC) electrode for electrochemiluminescent (ECL) detection of pesticide triazophos. The electrochemical and ECL behaviours of luminol at the imprinted PATP/AuNP/CNT/GC electrode were investigated before and after the rebinding of triazophos. It was also found that the ECL intensity was strikingly enhanced by the adsorbed triazophos molecules in the imprinted PATP/AuNP/CNT composite membranes, which was about 5.2-fold as compared with the blank ECL intensity. On this basis, the molecularly imprinted polymer (MIP)-ECL sensor is established for high sensitive and selective detection of triazophos residues in vegetable samples. The resulting MIP-ECL sensor shows wide linear ranges from 3.1 × 10?8 to 3.1 × 10?5 g L?1 with lower detection limit of 3.1 × 10?9 g L?1 for triazophos. Moreover, the MIP-ECL sensor has the advantages of high sensitivity, speed, specificity, stability and can become a promising technique for organophosphate pesticide detection.  相似文献   

4.
The electrochemiluminescent (ECL) behavior of lucigenin on a multi-wall carbon nanotube/nano-Au modified glassy carbon electrode (MWNT/nano-Au/GCE) was studied in this paper. Compared with the bare GCE, the ECL intensity of lucigenin can be greatly enhanced at MWNT/nano-Au/GCE. Based on the fact that superoxide dimutase (SOD) could obviously inhibit the ECL of lucigenin at MWNT/nano-Au/GCE, a sensitive ECL biosensor for determination of SOD was developed with a wide linear range of 5.0 × 10−8–5.0 × 10−6 mol/L with detection limit of 2.5 × 10−8 mol/L.  相似文献   

5.
Single-wall carbon nanotubes (SWNT) were dispersed into water in the presence of dicetyl phosphate (DCP), and then a SWNT-DCP film-coated glassy carbon electrode (GCE) was constructed. The electrochemical behavior of acetaminophen at bare GCE and SWNT-DCP modified GCE were compared, suggesting that the SWNT-DCP-modified GCE significantly enhances the oxidation peak current of acetaminophen. A sensitive and simple electrochemical method with a good linear relationship in the range of 1.0 × 10−7–2.0 × 10−5 mol L−1, was developed for the determination of acetaminophen. The detection limit is 4.0 × 10−8 mol L−1 for 3-min accumulation. This method was successfully demonstrated with tablets.  相似文献   

6.
A novel chitosan-carboxylated multiwall carbon nanotube modified glassy carbon electrode (MC/GCE) was developed to investigate the oxidation behavior of nitrite using cyclic voltammetry and differential pulse voltammetry modes. The electrochemical mechanism of the MC/GCE towards nitrite was discussed. The MC/GCE exhibited fast response towards nitrite with a detection limit of 1 × 10−7 mol l−1 and a linear range of 5 × 10−7–1 × 10−4 mol l−1. The possible interference from several common ions was tested. The proposed method was successfully applied in the detection of nitrite in real samples.  相似文献   

7.
An electrochemical biosensor was fabricated by covalent modification of 5-hydroxytryptophan (5-HTP) on the surface of glassy carbon electrode (GCE). The electrode, denoted as 5-HTP/GCE, was characterized by X-ray photoelectron spectroscopy, cyclic voltammetry and differential pulse voltammetry. For comparison, tryptophan modified GCE (TRP/GCE) and serotonin modified GCE (5-HT/GCE) were prepared by the same method. It was found that electrocatalytic ability of these electrodes was in the order of 5-HTP/GCE?>?TRP/GCE?>?5-HT/GCE for the oxidation of dopamine (DA) and 5-HT. The sensor was effective to simultaneously determine DA and 5-HT in a mixture. It can resolve the overlapping anodic peaks into two well-defined voltammetric peaks at 0.24 and 0.39 V (versus SCE). The linear response is in the range of 5.0?×?10?7–3.5?×?10?5 mol L?1 with a detection limit of 3.1?×?10?7 mol L?1 for DA, and in the range of 5.0?×?10?6–3.5?×?10?5 mol L?1 with a detection limit of 1.7?×?10?6 mol L?1 for 5-HT (s/n?=?3), respectively.  相似文献   

8.
陈静  蔡称心 《中国化学》2004,22(2):167-171
Introduction Because of its novel structural and electronic proper-ties, high chemical stability, and extremely high me-chanical strength and modulus,1 carbon nanotube (CNT), which has become a major subject of many experimen-tal and theoretical investigations, has a wide potential application from structural materials to nanoelectronic components2-12 since its initial discovery by Iijima13 in 1991 and the subsequent report about the synthesis of large quantities of CNT by Ebbesen and cowork…  相似文献   

9.
A modified electrode was fabricated by electrochemically deposition of Pt nanoparticles on the multiwall carbon nanotube covered glassy carbon electrode (Pt nanoparticles decorated MWCNT/GCE). A higher catalytic activity was obtained to electrocatalytic oxidation of ascorbic acid, dopamine, and uric acid due to the enhanced peak current and well‐defined peak separations compared with both, bare and MWCNT/GCE. The electrode surfaces were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS). Individual and simultaneous determination of AA, DA, and UA were studied by differential pulse voltammetry. The detection limits were individually calculated for ascorbic acid, dopamine, and uric acid as being 1.9×10?5 M, 2.78×10?8 M, and 3.2×10?8 M, respectively. In simultaneous determination, LODs were calculated for AA, DA, and UA, as of 2×10?5 M, 4.83×10?8 M, and 3.5×10?7 M, respectively.  相似文献   

10.
A simple but highly sensitive electrochemical sensor for the determination of 8-azaguanine based on graphene-Nafion nanocomposite film-modified glassy carbon electrode (G-Nafion/GCE) was reported. The electrochemical behaviors of 8-azaguanine at G-Nafion/GCE were investigated by cyclic voltammetry (CV), square wave voltammetry (SWV), chronoamperometry (CA), and chronocoulometry (CC). The results showed that the electrochemical sensor exhibited excellent electrocatalytic activity to 8-azaguanine. 8-Azaguanine can be effectively accumulated at G-Nafion/GCE and produce a sensitive anodic peak, due to the synergetic functions of graphene and Nafion. Under the selected conditions, the modified electrode in pH 1.98 Britton-Robinson buffer solution showed a linear voltammetric response to 8-azaguanine within the concentration range of 5.0 × 10?8~3.0 × 10?5 mol L?1, with the detection limit of 1.0 × 10?8 mol L?1. And, the method was also applied to detect 8-azaguanine in spiked human urine with wonderful satisfactory results.  相似文献   

11.
We report a simple method for the direct and quantitative determination of L-tryptophan (Trp) and L-tyrosine (Tyr) using a glassy carbon electrode (GCE) modified with single-walled carbon nanohorns (SWCNHs). The SWCNH modified GCE exhibits high electrocatalytic activity towards the oxidation of both Trp and Tyr. It shows a linear response to Trp between 0.5 and 50 μM and to Tyr between 2 and 30 μM. The detection limits for Trp and Tyr are 50 nM and 400 nM, respectively. In addition, the modified GCE displays good selectivity and good sensitivity, thus making it suitable for the determination of Trp and Tyr in spiked serum samples.
Figure
The electrochemical sensor based on single-walled carbon nanohorns modified glassy carbon electrode was presented. The fabricated electrochemical sensor exhibits favorable analytical performance for L-tryptophan and L-tyrosine with high sensitivity, low detection limit, and good reproducibility.  相似文献   

12.
《Analytical letters》2012,45(15):2832-2843
Abstract

This work demonstrates the electrochemical behavior of the 1-phenyl-3-methyl-4-(α-furoyl)-pyrazolone-5 (HPMαFP) modified glassy carbon electrode (HPMαFP/GCE) by a dropletting method. Tyrosine (Tyr) was detected at the HPMαFP/GCE by cyclic voltammetry. The mechanism and the best condition of electrode reaction were studied. The results indicate Tyr has an excellent electrochemical response at HPMαFP/GCE; under optimized experimental conditions, the peak current is proportional to the concentration of Tyr over a wide range. The linear regression equation at HPMαFP/GCE is IPa (µA) = 1.01134 + 0.96716 C (µmol · L?1) (r = 0.99914). The low detection limit is 1.6 × 10?7 mol · L?1. The modified electrode exhibited high sensitivity, good selectivity, and reproducibility, and it is easy to prepare.  相似文献   

13.
The highly sensitive determination of ofloxacin (OFL) in human serum and urine was achieved on a novel tryptophan‐graphene oxide‐carbon nanotube (Trp‐GO‐CNT) composite modified glassy carbon electrode (Trp‐GO‐CNT/GCE). The Trp‐GO‐CNT composite was fabricated, and its morphologies and surface functional groups were characterized by field emission scanning electron microscopy (FE‐SEM) and Fourier transform infrared (FT‐IR) spectroscopy. The electrochemical properties of Trp‐GO‐CNT/GCE were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The superior electrochemical behaviors of Trp‐GO‐CNT/GCE toward OFL can be mainly assigned to the excellent electrocatalytic activity of Trp, the great conductivity and high surface area of GO and CNT, and the synergistic effect between Trp, GO and CNT. Under optimum conditions, a wide and valuable linear range (0.01–100 μM), a low detection limit (0.001 μM, S/N=3), a good linear relationship (R2>0.999), good stability and repeatability were obtained for the quantitative determination of OFL. Furthermore, the Trp‐GO‐CNT electrochemical sensor was successfully applied to the determination of OFL in human serum and urine samples, and satisfactory accuracy and recovery could be obtained.  相似文献   

14.
Based on single‐walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE/SWCNTs), a novel method was presented for the determination of L ‐tyrosine. The GCE/SWCNTs exhibited remarkable catalytic and enhanced effects on the oxidation of L ‐tyrosine. In 0.10 mol/L citric acid‐sodium citrate buffer solution, the oxidation potential of L ‐tyrosine shifted negatively from +1.23 V at bare GCE to +0.76 V at GCE/SWCNTs. Under the optimized experimental conditions, the linear range of the modified electrode to the concentration of L ‐tyrosine was 5.0×10?6–2.0×10?5 mol/L (R1=0.9952) and 2.7×10?5–2.6×10?4 mol/L (R2=0.9998) with a detection limit of 9.3×10?8 mol/L. The kinetic parameters such as α (charge transfer coefficient) and D (diffusion coefficient) were evaluated to be 0.66, 9.82×10?5 cm2 s?1, respectively. And the electrochemical mechanism of L ‐tyrosine was also discussed.  相似文献   

15.
A multi-wall carbon nanotube (MWNT)/cetyl pyridine bromine (CPB) composite film modified glassy carbon electrode (GCE) was developed for the electrochemical determination of hymecromone in phosphonate buffer. Electrochemical behaviour of hymecromone at the composite film electrode was investigated with voltammetry. Compared with an irreversible oxidation of hymecromone at the bare GCE, the oxidation peak current was enhanced greatly at the film electrode. Some parameters such as pH, scan rate, accumulation potential and accumulation time were optimized. Under optimal conditions, an oxidation peak at 0.82 V was employed to determine hymecromone electrochemically. A linearity between the oxidation peak current and the hymecromone concentration was obtained in the range of 3.0 × 10−7 − 2.0 × 10−5 mol 1−1 with a detection limit of 8.0 × 10−8 mol 1−1. The proposed procedure was successfully applied to assay hymecromone in pharmaceutical formulation with satisfactory results. The text was submitted by the authors in English.  相似文献   

16.
Selective dopamine (DA) determinations using porous‐carbon‐modified glassy carbon electrodes (GCE) in the presence of ascorbic acid (AA) were studied. The effects of structure textures and surface functional groups of the porous carbons on the electrochemical behavior of DA was analyzed based on both cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements. The differential pulse voltammetry of DA on the modified GCE was determined in the presence of 400‐fold excess of AA, and the linear determination ranges of 0.05–0.99, 0.20–1.96, and 0.6–12.60 μM with the lowest detected concentrations of 4.5×10?3, 4.4×10?2, and 0.33 μM were obtained on the mesoporous carbon, mesoporous carbon with carboxylic and amino groups modified electrodes, respectively.  相似文献   

17.
The polymerization of o-phenylenediamine (OPD) on l-tyrosine (Tyr) functionalized glassy carbon electrode (GCE) and its electro-catalytic oxidation towards ascorbic acid (AA) had been studied in this report. l-Tyrosine was first covalently grafted on GCE surface via electrochemical oxidation, which was followed by the electrochemical polymerization of OPD on the l-tyrosine functionalized GCE. Then, the poly(o-phenylenediamine)/l-tyrosine composite film modified GCE (POPD-Tyr/GCE) was obtained. X-ray photo-electron spectroscopy (XPS), field emission scanning electron microscope (SEM), and electrochemical techniques have been used to characterize the grafting of l-tyrosine and the polymerization and morphology of OPD film on GCE surface. Due to the doping of the carboxylic functionalities in l-tyrosine molecules, the POPD film showed good redox activity in neutral medium, and thus, the POPD-Tyr/GCE exhibited excellent electrocatalytic response to AA in 0.1 mol l−1 phosphate buffer solution (PBS, pH 6.8). The anode peak potential of AA shifted from 0.58 V at GCE to 0.35 V at POPD-Tyr/GCE with a greatly enhanced current response. A linear calibration graph was obtained over the AA concentration range of 2.5 × 10−4–1.5 × 10–3 mol l−1 with a correlation coefficient of 0.9998. The detection limit (3δ) for AA was 9.2 × 10−5 mol l−1. The modified electrode showed good stability and reproducibility and had been used for the determination of AA content in vitamin C tablet with satisfactory results.  相似文献   

18.
Electrocatalytic oxidation of hydrazine (HZ) was studied on an stable modified glassy carbon electrode (GCE) based on poly (4-aminobenzene sulfonic acid) (4-ABSA) film. The 4-ABSA-modified glassy carbon electrode was prepared by electrochemical polymerization technique in phosphate buffer solution (PBS) (pH 7.0) and its electrochemical behavior were studied by cyclic voltammetry (CV). The polymer filmmodified electrode has very high catalytic ability for electrooxidation of HZ, which appeared as a reduced overpotential in a wide operational pH range of 5–10. Limit of detection (LOD) and limit of quantification (LOQ) were obtained as 1.31 × 10–7 and 4.35 × 10–7 M for CV; 7.89 × 10–8 and 2.63 × 10–7 M for CA, respectively. The results of experiments showed that prepared modified electrode have good stability, sensitivity and reproducibility for at least one month if stored dry in air.  相似文献   

19.
A tyrosinase (Tyr) biosensor was fabricated by immobilizing Tyr on the surface of multiwalled carbon nanotubes (MWNTs)‐chitosan (Chit) composite modified glassy carbon electrode (GCE). The MWNTs‐Chit composite film provided a biocompatible platform for the Tyr to retain the bioactivity and the MWNTs possessed excellent inherent conductivity to enhance the electron transfer rate. The Tyr/MWNTs‐Chit/GCE biosensor showed high sensitivity (412 mA/M), broad linear response (1.0×10?8–2.8×10?5 M), low detection limit (5.0 nM) and good stability (remained 93% after 10 days) for determination of phenol. The biosensor was further applied to rapid detection of the coliforms, represented by Escherichia coli (E. coli) in this work. The current responses were proportional to the quantity of coliforms in the range of 104–106 cfu/mL. After 5.0 h of incubation, E. coli could be detected as low as 10 cfu/mL.  相似文献   

20.
Polypyrrole-sepiolite (PPy/SPL) nanofibers were prepared by in situ chemical oxidation polymerization in the presence of sepiolite. A PPy/SPL composite modified glassy carbon electrode (PPy/SPL/GCE) was prepared and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and electrochemical methods. Differential pulse anodic stripping voltammetry for the simultaneous determination of trace Pb(II) and Cd(II) was carried out at the PPy/SPL/GCE. Operational parameters such as the deposition potential and time, the amount of modified suspension, and the pH values were optimized for the purpose of determination of trace metal ions in 0.10 M acetate buffer solution. Under the optimal conditions, the stripping peak currents showed good linear relationships with Pb(II) and Cd(II) at concentration ranges of 5.0 × 10–9?1.2 × 10–6 M and 5.0 × 10–9?1.2 × 10–7 M, and the detection limits were 1.2 and 1.5 nM, respectively. The proposed method is applicable to the simultaneous determination of trace Pb(II) and Cd(II) in real water samples with the relative standard deviations of less than 4.4% and the recovery rates of 97.9?102.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号