首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A voltage-applicable heating specimen holder is developed to observe solid oxide fuel cells (SOFCs) in an environmental transmission electron microscope. An SOFC specimen can be heated and has a voltage applied in an oxygen gas atmosphere using the holder. Oxygen ion migration and redox reactions in the specimen could also be realized. The heating unit, which consists of nickel–chromium alloy mounted on the tip of the developed specimen holder, can heat the specimen up to 1200 K in an oxygen gas atmosphere. A specimen preparation method for the SOFC structure is also established using a focused ion beam technique. The holder has high stability for high-resolution imaging and electron energy loss spectroscopy under the in situ condition. The mechanical and electrical stabilities are estimated from high-resolution images and electron energy loss spectra of the heated and voltage-applied specimen in an oxygen gas atmosphere. The developed holder is a powerful tool to reveal the microstructural and electronic structural changes that occur by electrochemical reactions at the interfaces of an SOFC.  相似文献   

2.
An important objective in the development of solid oxide fuel cell (SOFC) is to produce thin stabilized zirconia electrolytes that are supported upon the nickel–zirconia composite anode. Although this will reduce some of the problems associated with SOFCs by permitting lower temperature operation, this design may encounter problems during start- up. The first step in a start-up involves the reduction of nickel oxide in the anode to metallic nickel and increase of three-phase boundary will be beneficial for further reaction. In this study, two pretreatment methods are investigated for their effects on the performances of SOFC. Performances of the SOFCs are influenced by the pretreatment conditions, which included exposure of the cells to dilute H2/O2 either under open-circuit or closed-circuit conditions before their performance studies. By carrying out the methods, the pretreatment using the closed circuit is found to attain much higher performances effectively and efficiently. Accompanying with SEM and element analysis, increase of three-phase boundary is considered to give rise to changes in the anode microstructure, leading to activation of the anode. Mechanisms of NiO in anode reducing to Ni and porous structure via different pretreatments and their effects on the anode microstructure are proposed.  相似文献   

3.
We report the results of first-principles calculations (generalized gradient approximation-Perdew Wang 1991) on the electronic and vibrational properties of several nickel sulfides that are observed on Ni-based anodes in solid oxide fuel cells (SOFCs) upon exposure to H2S contaminated fuels: heazlewoodite Ni3S2, millerite NiS, polydymite Ni3S4, and pyrite NiS2. The optimized lattice parameters of these sulfides are within 1% of the values determined from x-ray diffraction. The electronic structure analysis indicates that all Ni-S bonds are strongly covalent. Furthermore, it is found that the nickel d orbitals shift downward in energy, whereas the sulfur p orbitals shift upward with increasing sulfur content; this is consistent with the decrease in conductivity and catalytic activity of sulfur-contaminated Ni-based electrodes (or degradation in SOFC performance). In addition, we systematically analyze the classifications of the vibrational modes at the point from the crystal symmetry and calculate the corresponding vibrational frequencies from the optimized lattice constants. This information is vital to the identification with in situ vibrational spectroscopy of the nickel sulfides formed on Ni-based electrodes under the conditions for SOFC operation. Finally, the effect of thermal expansion on frequency calculations for the Ni3S2 system is also briefly examined.  相似文献   

4.
In this work, we studied the effect of acid type in the final properties of CNTs as the resistance to air oxidation; for this, different techniques of characterization were used such as Raman spectroscopy, thermogravimetric analysis, and chemical analysis by ICP-AES. Through Raman spectroscopy, it is possible to monitor the structural changes induced by acids and this is reflected in changing of the activation energies for the different processes determined by thermogravimetric analysis; also by ICP-AES analysis, it was shown that the inorganic material was eliminated efficiently with the acid treatments used in this study.  相似文献   

5.
采用固相浸渍法制备了一系列NiO/CeO2催化剂,并通过与常规湿浸渍法比较,考察了制备方法对催化剂和CO氧化反应性能的影响.同时结合X射线衍射(XRD),N2吸附-脱附(BET),透射电镜(TEM),氢气-程序升温还原(H2-TPR),拉曼(Raman)光谱,X射线光电子能谱(XPS)等手段对催化剂的结构和表面物种分散状态进行了表征.CO氧化活性测试结果表明,当镍负载量相同时,固相浸渍法制备的催化剂相比于湿浸渍法表现出更好的催化性能.TEM、XPS、H2-TPR结果表明,固相浸渍法更有利于加强镍铈间的相互作用和得到高分散的镍物种,从而促进镍物种的还原.Raman结果表明固相浸渍法相比于湿浸渍法能产生更多氧空位,这有利于氧气在催化剂表面的活化,使得CO氧化反应更容易进行.  相似文献   

6.
The influence of alkali metal potassium(I)-doping on the properties of tetrakis(thiourea)nickel(II) chloride crystals has been investigated. The variation in the intensity observed in powder X-ray diffraction (XRD) of doped specimen and slight shifts in vibrational frequencies confirm the lattice stress as a result of doping. Surface morphological changes due to doping of the alkali metal are observed by scanning electron microscopy. The incorporation of K(I)- into the crystal lattice was confirmed by energy dispersive X-ray spectroscopy. Lattice parameters are determined by single crystal XRD analysis. The thermogravimetric and differential thermal analysis studies reveal the purity of the materials and no decomposition is observed up to the melting point. The crystal is further characterized by UV–Vis and Kurtz powder technique.  相似文献   

7.
Raman spectroscopy has been used to study the thermal transformations of natural magnesium oxalate dihydrate known in mineralogy as glushinskite. The data obtained by Raman spectroscopy was supplemented with that of infrared emission spectroscopy. The vibrational spectroscopic data was complimented with high resolution thermogravimetric analysis combined with evolved gas mass spectrometry. TG-MS identified two mass loss steps at 146 and 397 degrees C. In the first mass loss step water is evolved only, in the second step carbon dioxide is evolved. The combination of Raman microscopy and a thermal stage clearly identifies the changes in the molecular structure with thermal treatment. Glushinskite is the dihydrate phase in the temperature range up to the pre-dehydration temperature of 146 degrees C. Above 397 degrees C, magnesium oxide is formed. Infrared emission spectroscopy shows that this mineral decomposes at around 400 degrees C. Changes in the position and intensity of the CO and CC stretching vibrations in the Raman spectra indicate the temperature range at which these phase changes occur.  相似文献   

8.
Raman spectroscopy is a noninvasive and highly sensitive analytical technique capable of identifying chemical compounds in environments that can mimic SOFC operating conditions. Here we demonstrate the use of Raman spectroscopy to perform local thermal and temporal measurements, both of which are essential if phase formation diagrams are to be mapped out and compared to thermodynamic phase stability predictions. We find that the time resolution of the Raman technique is more than sufficient to capture essential dynamic effects associated with a change of chemical composition.  相似文献   

9.
Summary: Raman spectroscopy was applied to perform a comprehensive morphological analysis of polyethylene (PE) ski base materials at different processing levels. The morphological characterization included determination and evaluation of Raman spectra and examination of the crystallinity values by differential scanning calorimetry (DSC). A good agreement between Raman and DSC crystallinity fractions was obtained, thus corroborating the Raman spectroscopy approach. While for the PE grade with the lowest average molar mass no significant morphological changes due to processing from the raw material via the extruded film to the post-treated film was found, higher molar mass PE grades exhibited a decrease of crystallinity, but an increase of the amorphous fraction along the process chain.  相似文献   

10.
The role of autophagy in numerous physiological responses triggered by a variety of mechanisms both in states of health and disease has raised considerable interest in this cellular process. However, the current analytical tools to study autophagy are either invasive or require genetic manipulation. Raman microspectroscopy is a potentially quantitative analytical method that has been shown to be useful for the label-free, non-destructive analysis of living biological cells and tissues. We present in this study initial efforts to study autophagy using Raman spectroscopy. The response of adherent mouse and human cancer cells to starvation conditions (glutamine deprivation and amino acid deprivation) was probed by Raman spectroscopy and compared to fluorescence microscopy results using autophagy-specific markers. We also demonstrate the capability of Raman spectroscopy to monitor the recovery dynamics of starved cells and to probe the heterogeneity in the response to starvation that can arise in cell populations. Finally, this work suggests that the 718 cm(-1) Raman line associated with phospholipids may be a useful spectral marker indicative of an autophagic response to starvation stimuli. Overall, this study establishes the utility of Raman spectroscopy to non-invasively detect biologically relevant changes in live cells exposed to conditions known to trigger autophagy.  相似文献   

11.
Kendall C  Day J  Hutchings J  Smith B  Shepherd N  Barr H  Stone N 《The Analyst》2010,135(12):3038-3041
Early detection of (pre-)cancerous changes improves prognosis, therefore in the UK patients at high risk of developing gastrointestinal cancers are enrolled on endoscopic surveillance programmes or the Bowel Cancer Screening Programme. The current gold standard technique for the detection of pre-cancerous changes in the gastrointestinal tract is histopathological analysis of biopsy tissue collected at endoscopy. This relies upon subjective assessment of morphological changes within the excised tissue samples and poor targeting of pre-malignant lesions. Raman spectroscopy offers a number of potential advantages for in vivo assessment of tissue at endoscopy. The performance of a custom built Raman probe as a biopsy targeting tool has been evaluated using excised biopsy material. Multivariate classification models have been used to demonstrate the likely ability of a miniature, confocal, fibre optic Raman probe to be used as an optical biopsy tool at endoscopy to provide spectral information in clinically practicable timescales. This technique could facilitate improved targeting of excisional biopsy with associated clinical benefits.  相似文献   

12.
A simple route to selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes (MWCNTs) using nickel acetylacetonate (NAA) was successfully achieved for the first time. The homogeneously decorated nanocrystals on MWCNTs were investigated for their structure and morphology by various techniques, such as powder X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, field emission scanning electron microscopy and thermogravimetric analysis. It was found that the size distributions of the nanocrystals on MWCNTs ranged from 8 to 15 nm and they were well resolved. The precursor, NAA, was effectively employed to impregnate the MWCNTs, which on calcination at suitable temperatures and in the presence of hydrogen and nitrogen atmosphere gave rise to nickel and nickel oxide nanocrystals, respectively.  相似文献   

13.
Pyrolysis ofpolysterene sulfonic acid-co-maleic acid salts at 800 degrees C resulted in formation of new materials consisting of porous carbon and metal species dispersed on the surface. After hydrochloric acid treatment, the metal oxides/salts were removed. Obtained materials were characterized using adsorption of nitrogen, thermogravimetric analysis, Raman spectroscopy, and scanning electron microscopy with energy dispersive analysis of X-rays. The results showed highly developed porous structures in the range of micro- and mesopores. The porous features of new materials resemble those characteristics for carbon foams. The differences in the porous structure are linked to the type of transition metal used for the modification of the initial polymer and the chelation process. Macro- and mesopores are spherical/cylindrical in shape, and they are likely formed when release of pyrolysis gases, such as CO2, NO2, SO2, H2S, and CxHy, occurs. Moreover, reduction of metal, its migration to the surface, and agglomeration contribute to development of porosity. Depending on the reactivity of the metal used for cation exchange (Fe, Co, or Ni) either sulfides (nickel and cobalt) or oxides (cobalt and iron) are formed on the carbon surface.  相似文献   

14.
以椰壳炭、竹炭和木炭三种活性炭为载体,采用浸渍法制备炭负载金属镍的催化剂,考察其在废塑料裂解制备碳纳米管过程中的催化反应性能;采用X射线衍射、扫描电镜、透射电镜、拉曼光谱仪、同步热分析仪、比表面积分析仪等手段分析了催化剂和产物碳纳米管的形貌和结构。结果表明,椰壳活性炭为载体制备的镍基催化剂上碳纳米管产量最高、石墨化程度最好。以椰壳活性炭为载体制备的镍基催化剂为例,研究了反应温度和镍负载量对其催化性能的影响。  相似文献   

15.
The kinetics of chemical transformation during the yogurt production was obtained using micro-Raman spectroscopy: Raman spectra were obtained as a function of the incubation time in the fermentation process from milk to yogurt. The milk fermentation by the lactic acid bacteria produces morphological, chemical and textural changes. The chemical transformations were followed using micro-Raman spectroscopy, while the aggregation process and some textural properties through the use of dynamic light scattering, viscosity and pH. Samples with three different starter culture concentrations and different incubation temperatures were prepared. The results indicate the presence of two regimes: the first one (primary metabolism) is characterized by an increment in the initial number of bacteria to reach a high concentration according to the conditions of food, temperature and space, together with some initial chemical transformations. The second regime corresponds properly to the fermentation process accelerated by the continuous reduction in pH due to the lactic acid production; this is accompanied by physical and chemical changes where new structures are created. Knowledge of the kinetics of chemical and physical transformations allows having a better control of the final product with an increase in the quality and shelf life of the final product; problems like phase separation, homogeneity, particle size, acidity, etc., can be controlled.  相似文献   

16.
Raman spectroscopy is one of the main analytical techniques used in optical metrology. It is a vibration, marker-free technique that provides insight into the structure and composition of tissues and cells at the molecular level. Raman spectroscopy is an outstanding material identification technique. It provides spatial information of vibrations from complex biological samples which renders it a very accurate tool for the analysis of highly complex plant tissues. Raman spectra can be used as a fingerprint tool for a very wide range of compounds. Raman spectroscopy enables all the polymers that build the cell walls of plants to be tracked simultaneously; it facilitates the analysis of both the molecular composition and the molecular structure of cell walls. Due to its high sensitivity to even minute structural changes, this method is used for comparative tests. The introduction of new and improved Raman techniques by scientists as well as the constant technological development of the apparatus has resulted in an increased importance of Raman spectroscopy in the discovery and defining of tissues and the processes taking place in them.  相似文献   

17.
Laser trapping by optical tweezers makes possible the spectroscopic analysis of single cells. Use of optical tweezers in conjunction with Raman spectroscopy has allowed cells to be identified as either healthy or cancerous. This combined technique is known as laser tweezers Raman spectroscopy (LTRS), or Raman tweezers. The Raman spectra of cells are complex, since the technique probes nucleic acids, proteins, and lipids; but statistical analysis of these spectra makes possible differentiation of different classes of cells. In this article the recent development of LTRS is described along with two illustrative examples for potential application in cancer diagnostics. Techniques to expand the uses of LTRS and to improve the speed of LTRS are also suggested.  相似文献   

18.
Thin solid films of bis benzimidazo perylene (AzoPTCD) were fabricated using physical vapor deposition (PVD) technique. Thermal stability and integrity of the AzoPTCD PVD films during the fabrication ( approximately 400 degrees C at 10(-6) Torr) were monitored by Raman scattering. Complementary thermogravimetric results showed that thermal degradation of AzoPTCD occurs at 675 degrees C. The growth of the PVD films was established through UV-vis absorption spectroscopy, and the surface morphology was surveyed by atomic force microscopy (AFM) as a function of the mass thickness. The AzoPTCD molecular organization in these PVD films was determined using the selection rules of infrared absorption spectroscopy (transmission and reflection-absorption modes). Despite the molecular packing, X-ray diffraction revealed that the PVD films are amorphous. Theoretical calculations (density functional theory, B3LYP) were used to assign the vibrational modes in the infrared and Raman spectra. Metallic nanostructures, able to sustain localized surface plasmons (LSP) were used to achieve surface-enhanced resonance Raman scattering (SERRS) and surface-enhanced fluorescence (SEF).  相似文献   

19.
This paper reports the study of the metastable hexagonal molybdenum oxide (h-MoO3) rods by looking at the vibrational, structural and morphological properties. The MoO3 as-synthesized rods were prepared by the precipitation method and characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy, revealing a hexagonal phase and submicrometric size of the MoO3. The vibrational modes of the h-MoO3 were calculated by density-functional perturbation theory (DFPT) and used by first time to do the signature of the experimentally observed Raman modes, filling a gap in this field. Experimental temperature-dependent Raman spectroscopy study was carried out on h-MoO3 rods and pointed out to a phase transition in the 675-690 K temperature range. This phase transition was confirmed by scanning electron microscopy that was used to analyze the morphological changes in the MoO3 samples during the heating cycle. Temperature-dependent Raman data analysis combined with DFT calculations allowed us to confirm the mechanism that underlies the stability loss of the hexagonal phase at the critical temperature and to correlate the wavenumber difference of two specific Raman bands with the real temperature of the sample.  相似文献   

20.
Nitrogen is often used as an inert background atmosphere in solid state studies of electrode and reaction kinetics, of solid state studies of transport phenomena, and in applications e.g. solid oxide fuel cells (SOFC), sensors and membranes. Thus, chemical and electrochemical reactions of oxides related to or with dinitrogen are not supposed and in general not considered. We demonstrate by a steady state electrochemical polarisation experiments complemented with in situ photoelectron spectroscopy (XPS) that at a temperature of 450 °C dinitrogen can be electrochemically activated at the three phase boundary between N(2), a metal microelectrode and one of the most widely used solid oxide electrolytes--yttria stabilized zirconia (YSZ)--at potentials more negative than E = -1.25 V. The process is neither related to a reduction of the electrolyte nor to an adsorption process or a purely chemical reaction but is electrochemical in nature. Only at potentials more negative than E = -2 V did new components of Zr 3d and Y 3d signals with a lower formal charge appear, thus indicating electrochemical reduction of the electrolyte matrix. Theoretical model calculations suggest the presence of anionic intermediates with delocalized electrons at the electrode/electrolyte reaction interface. The ex situ SIMS analysis confirmed that nitrogen is incorporated and migrates into the electrolyte beneath the electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号