首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a new nanomaterial of thiol functional ferrocene derivative (Fc-SH) stabilized Au NPs/carbon dots nanocomposite (Au/C NC) coupling with graphene modified glassy carbon electrode (Fc-S-Au/C NC/graphene/GCE) was fabricated to serve as a quadruplet detection platform for ultrasensitive and simultaneous determination of ascorbic acid (AA), dopamine (DA), uric acid (UA) and acetaminophen (AC). The Au/C NC was synthesized by adding HAuCl4 into carbon nanodots solution without using any additional reductant and stabilizing agent. Then the Fc-SH was utilized as the protective and capping agent to modify the Au/C NC. Transmission electron microscopy (TEM), UV–Vis, Fourier-transform infrared (FT-IR), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) were adopted to characterize the morphology and electrochemical properties of the materials and the electrodes. The Fc-S-Au/C NC/graphene/GCE exhibits a synergistic catalytic and amplification effects towards oxidation of AA, DA, UA and AC owing to the existence of the nanomaterial and electron mediator. When simultaneous detection of AA, DA, UA and AC, the oxidation peak potentials of the four compounds on the electrode can be well separated and the peak currents were linearly dependent on their concentrations. The quadruplet detection platform shows excellent linear range and ultrasensitive response to the four components, the detection limits were estimated to be as low as 1.00, 0.05, 0.12 and 0.10 μM (S/N = 3), and the modified electrode exhibits excellent stability and reproducibility. The proposed electrode has been successfully applied to detect of these four analytes in real samples with satisfactory results.  相似文献   

2.
Hocevar SB  Ogorevc B 《Talanta》2007,74(3):405-411
The present paper demonstrates the preparation and characterization of micro-electrodes based on carbon paste which is composed of carbon nano-particles with an average diameter of 30 nm and binding oil. The carbon paste electrode material is encased in pulled glass capillaries ranging in diameter from several tens down to less than ten micro-meters (r = 4.5 μm). Manipulation of the carbon paste micro-electrode (CPME) was accomplished via newly developed piston-driven system which construction and related problems are presented. Several parameters influencing the CPME performance including carbon paste composition and its electrochemical activation/preconditioning were investigated. Basic electrochemical behavior and properties were examined using typical redox system, i.e. potassium hexacyanoferrate. Applicability of the proposed carbon paste micro-electrode is illustrated by measuring some potentially interesting organic and inorganic analytes such as dopamine, ascorbic acid and selected heavy metals.  相似文献   

3.
Du M  Yang T  Ma S  Zhao C  Jiao K 《Analytica chimica acta》2011,(2):9921-174
Electrochemical activities of typically electrochemical targets at three kinds of modified carbon electrodes, i.e. carbon ionic liquid electrode (CILE), graphene/carbon paste electrode (CPE), and ionic liquid-functionalized graphene (IL-graphene)/CPE, were compared in detail. The redox processes of the probes at IL-graphene/CPE were faster than those at CILE and graphene/CPE from cyclic voltammetry. An electrochemical method for the simultaneous determination of guanine and adenine was described with detection limits of 6.5 × 10−8 mol L−1 (guanine) and 3.2 × 10−8 mol L−1 (adenine). Single A → G mutation of sequence-specific DNA could be discriminated by the IL-graphene/CPE.  相似文献   

4.
Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors.  相似文献   

5.
Bo Y  Wang W  Qi J  Huang S 《The Analyst》2011,136(9):1946-1951
A chemically modified graphene paste electrode was prepared by incorporating appropriate amounts of graphene in a paste mixture, followed by electrodepositing Prussian blue (PB) and coating chitosan on the electrode surface. The electrode was able to bind ssDNA, and gave a better voltammetric response for complement DNA than did ordinary carbon paste electrodes. The response of the electrode was characterized with respect to the paste composition, immobilization time of probe DNA on the chitosan and PB modified graphene paste electrode, and the effect of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC). The electrochemical behavior of PB assembled on the graphene paste electrode was investigated. The combination of graphene and PB can enhance the current response of the graphene paste electrode. As a consequence of DNA hybridization, a significant change in the current due to daunomycin intercalated with double-stranded DNA (ds-DNA) on the surface of the graphene paste electrode was observed.  相似文献   

6.
Electrodes modified with carbon nanomaterials find wide ranging applications in electrochemistry such as in energy generation and storage through to applications in electroanalysis. A substantial limitation is the presence of metallic impurities which vary between batches and can produce erroneous results. Consequently we have explored the electrochemical properties of metallic impurity free carbon nanotube paste electrodes using potassium ferrocyanide and hydrogen peroxide as model compounds. In terms of the latter utilising cyclic voltammetry, a linear range from 0.75 to 3 mM with a limit of detection of 0.19 mM is possible using the electrochemical oxidation of hydrogen peroxide while using the electrochemical reduction of the target analyte, a linear range from 0.5 to 249 mM is possible with a detection limit of 0.43 mM.The ultra-small size of the carbon nanotubes and fabrication methodology result in a tightly bound carbon nanotube electrode surface which does not exhibit thin-layer behaviour resulting in highly reproducible electrodes with the %RSD found to be 5.5%. These analytical ranges, detection limits and reproducibility are technologically useful.The carbon nanotubes utilised are completely free from metallic impurities and do not require lengthy processing to remove impurities and consequently have no variation in the purity of the nanomaterial between batches as is commonly the case for other available carbon nanotube material. The impurity free nature of this nanomaterial allows for highly reproducible and intelligent sensors based on carbon nanotubes to be understood and realised for the first time.  相似文献   

7.
The design and characterization of a microneedle array-based carbon paste electrode towards minimally invasive electrochemical sensing are described. Arrays consisting of 3 × 3 pyramidal microneedle structures, each with an opening of 425 μm, were loaded with a metallized carbon paste transducer. The renewable nature of carbon paste electrodes enables the convenient packing of hollow non-planar microneedles with pastes that contain assorted catalysts and biocatalysts. Smoothing the surface results in good microelectrode-to-microelectrode uniformity. Optical and scanning electron micrographs shed useful insights into the surface morphology at the microneedle apertures. The attractive performance of the novel microneedle electrode arrays is illustrated in vitro for the low-potential detection of hydrogen peroxide at rhodium-dispersed carbon paste microneedles and for lactate biosensing by the inclusion of lactate oxidase in the metallized carbon paste matrix. Highly repeatable sensing is observed following consecutive cycles of packing/unpacking the carbon paste. The operational stability of the array is demonstrated as well as the interference-free detection of lactate in the presence of physiologically relevant levels of ascorbic acid, uric acid, and acetaminophen. Upon addressing the biofouling effects associated with on-body sensing, the microneedle carbon paste platform would be attractive for the subcutaneous electrochemical monitoring of a number of physiologically relevant analytes.  相似文献   

8.
The emergence of nanotechnology has opened new horizons for electrochemical biosensors. This review highlights new concepts for electrochemical biosensors based on different carbon/inorganic hybrid nanoarchitectures. Particular attention will be given to hybrid nanostructures involving 1‐ or 2‐dimensional carbon nanotubes or graphene along with inorganic nanoparticles (gold, platinum, quantum dot (QD), metal oxide). Latest advances (from 2007 onwards) in electrochemical biosensors based on such hybrids of carbon/inorganic‐nanomaterial heterostructures are discussed and illustrated in connection to enzyme electrodes for blood glucose or immunoassays of cancer markers. Several strategies for using carbon/inorganic nanohybrids in such bioaffinity and biocatalytic sensing are described, including the use of hybrid nanostructures for tagging or modifying electrode transducers, use of inorganic nanomaterials as surface modifiers along with carbon nanomaterial label carriers, and carbon nanostructure‐based electrode transducers along with inorganic amplification tags. The implications of these nanoscale bioconjugated hybrid materials on the development of modern electrochemical biosensors are discussed along with future prospects and challenges.  相似文献   

9.
Electrochemical detection has a great potential in microfluidic systems due to its easy miniaturization without losing analytical performance. In addition, the use of nanomaterials in electroanalysis improves sensitivity, selectivity, and reproducibility. The topic of this review is the use of nanomaterials (nanoparticles, nanotubes, graphene) in electrochemical detection for capillary electrophoresis and microfluidic systems (microchips and paper based analytical devices). This review covers from 2015 up to now and it is a continuation of our previous review, also published in Electrophoresis journal. The following aspects of the surveyed articles are mainly addressed: type of nanomaterial, protocol of working electrode preparation (composite, drop casting and others), advantages of nanomaterial employment and application field (clinical, food, environmental and home security). The use of nanomaterials is still an interesting approach to improve the analytical performance of electrochemical detection based on microfluidic devices. Along the review, readers will find new protocols for working electrode modification, new carbon nanomaterials and promising applications in the aforementioned fields.  相似文献   

10.
Journal of Solid State Electrochemistry - A comparative study about the electrochemical response of glassy carbon electrode modified with four different carbon nanomaterial (CNM) against dsDNA is...  相似文献   

11.
A new type of potentiometric sensor based on a recently constructed carbon ionic liquid electrode (CILE) is described. Two kinds of ionic liquids, i.e., N‐octylpyridinium hexafluorophosphate (OPFP) and 1‐butyl‐3‐methylimidazoluim hexafluorophosphate (BMFP) were tested as binder for construction of the carbon composite electrode. The characteristics of these electrodes as potentiometric sensors were evaluated and compared with those of the traditional carbon paste electrode (CPE). The results indicate that potentiometric sensors constructed with ionic liquid show an increase in performance in terms of Nernstian slope, selectivity, response time, and response stability compared to CPE.  相似文献   

12.
《Electroanalysis》2017,29(7):1660-1669
Over the past few decades, the (bio)functionalization of carbon nanomaterials (CNMs), such as nanohorns, carbon nanotubes, graphene, graphite and related with a wide range of (bio)modifiers have been extensively studied for their incorporation on different pure metal or carbon electrode surfaces via drop‐casting. However, CNMs are also shown to be important functional additives for polymers, having great potential to produce rigid nanocomposite materials with a range of enhanced properties, including mechanical, optical, electrical, thermal and electrochemical. The high malleability derived from the host polymer allows alternative strategies that can be carried out in order to incorporate different types of (bio)modifiers in/on/into a polymeric nanocomposite electrode. Accordingly, this mini review overviews the main methodologies used for the bio‐functionalization of electrochemical transducers based on nanocomposite carbon paste electrodes (NC‐CPEs). Additionally, the most extensively (bio)modifiers used in electrochemical (bio)sensing, together with their various electrocatalytical performance are also discussed, fact that might serve as a general outlook for planning further research.  相似文献   

13.
Electrochemical behaviors of dipyridamole (DIP) at a carbon paste electrode in the presence of cetyltrimethyl ammonium bromide (CTAB) were investigated by voltammetry, chronocoulometry and electrochemical impedance spectroscopy (EIS). The results indicated that the electrochemical responses of DIP are apparently improved by CTAB, due to the enhanced accumulation of dipyridamole at the carbon paste electrode surface. Electrochemical parameters for the oxidation of DIP were explored by chronocoulometry. Under optimal conditions, the oxidation peak current at 0.53 V was proportional to DIP concentration in the range of 0.03-12 microg mL-1, with a detection limit of 0.01 microg mL-1 for 120 s accumulation by different pulse voltammetry (DPV). This method was applied to the determination of DIP in the tablet samples. The results were satisfying compared with that obtained by standardized method of high performance liquid chromatography (HPLC).  相似文献   

14.
Different graphitic carbon-based electrode materials were evaluated for direct electro-oxidation of clindamycin and electroanalytical parameters such as sensitivity, residual background current, and signal-tobackground current ratio were compared to select the best one for the clindamycin electroanalysis. Such electrode materials include glassy carbon, carbon paste, pyrolytic graphite (edge-plane and basal-plane), carbon nanotube, reduced graphene oxide, and carbon black. The edge-plane pyrolytic graphite electrode after a simple and fast electrochemical pretreatment showed superior performance compared with the other carbon electrodes. Raman and Fourier transform infrared spectroscopy were employed to analyze the surface microstructure and chemical bonding of the carbon materials and scanning electron microscopy was used to study their surface morphologic features. The applicability of the electrochemically activated edge-plane pyrolytic graphite electrode for the determination of clindamycin in pharmaceutical formulations and human urine samples was evaluated.  相似文献   

15.
The effect of the SnO(2) nanoparticles (SNPs) on the behaviour of voltammetric carbon paste electrodes were studied for possible use of this material in biosensor development. The electrochemical behaviour of SNP modified carbon paste electrodes (CPE) was first investigated by using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The performance of the SNP modified electrodes were compared to those of unmodified ones and the parameters affecting the response of the modified electrode were optimized. The SNP modified electrodes were then tested for the electrochemical sensing of DNA purine base adenine to explore their further development in biosensor applications.  相似文献   

16.
A new carbon composite electrode material, based on mixing glassy carbon (GC) microparticles with an organic pasting liquid is described. The resulting glassy carbon paste electrode (GCPE) combines the electrochemical properties of GC with the various advantages of composite electrodes. Glassy carbon pastes (GCPs) offer high electrochemical reactivity, a wide accessible potential window, a low background current, and are inexpensive, easy to prepare, modify, and renew. The new material has a lower double-layer capacitance and a higher heterogeneous rate constant (for ferricyanide) compared to conventional carbon pastes (CPs). Scanning electron microscopy (SEM) images indicate significant differences in the structure of GCPE and carbon paste electrode (CPE). Factors influencing the electrode kinetics of GCPE surfaces are discussed. The electrochemical properties and advantages of GCPE should be of broad utility in electroanalysis.  相似文献   

17.
Single-walled carbon nanohorn (SWCNH) paste electrode was used for amperometric determination of concentrated hydrogen peroxide, and was compared with other carbon electrodes. The calibration plots are linear from 0.5 to 100 mM at activated SWCNH paste electrode and edge plane graphite (EPG) electrode. In contrast, the calibration plots are linear only at concentrations lower than 45 mM at graphite paste electrode, multi-walled carbon nanotube paste electrode, and glassy carbon electrode. Our results show that SWCNH paste electrode and EPG electrode are interesting alternatives to high surface area platinum electrode for determination of concentrated hydrogen peroxide. Because of its high-purity, metal-free SWCNH is a user-friendly and attractive material for electrochemical study.  相似文献   

18.
研究了硫脲(Thiourea,Tu)在10-甲基吩噻嗪修饰碳糊电极(MPT/CPE)上的电催化氧化行为.结果表明,Tu在裸碳糊电极(CPE)上的直接电化学氧化过程十分迟缓,MPT/CPE对Tu的电化学氧化具有良好的催化作用.用计时电流法(CA)测定了Tu在MPT/CPE上的电极过程动力学参数,测得电荷传递系数α=0.61,电催化氧化反应的速率常数k=(1.96±0.10)×104(mol/L)-1·s-1.用方渡伏安法(SWV)测得催化氧化峰电流与Tu浓度在1.0×10-6~8.0×10-3mol/L范围内呈良好的线性关系,线性回归方程为,Ips(μA)=10.836c(10-3mol/L)+5.326,R=0.9984,检出限为2.2×10-7mol/L(S/N=3).方法可用于Tu的电化学法测定.  相似文献   

19.
The graphene paste electrode (GPE), modified with platinum nanoparticles (NPt), is fabricated and characterized by electrochemical impedance spectroscopy and cyclic voltammetry. Borohydride electrooxidation and hydrogen evolution reaction (HER) are investigated by cyclic voltammetry at surface of the fabricated electrode. Linear sweep voltammetry of NPt/GPE and NPt/carbon paste electrode in different concentrations of borohydride was studied. Results demonstrate good conductivity and electrocatalytic activity of NPt/GPE toward borohydride electrooxidation and HER. The morphology of platinum nanoparticles is studied by atomic force microscopy.  相似文献   

20.
Graphene is a new 2D nanomaterial with outstanding material, physical, chemical, and electrochemical properties. In this review, we first discuss the methods of preparing graphene sheets and their chemistry. Following that, the fundamental reasons governing the electrochemistry of graphene are meaningfully described. Graphene is an excellent electrode material with the advantages of conductivity and electrochemistry of sp2 carbon but without the disadvantages related to carbon nanotubes, such as residual metallic impurities. We highlight important applications of graphene and graphene nanoplatelets for sensing, biosensing, and energy storage. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 211–223; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.200900008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号