首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we demonstrate for the first time that upon electrochemical oxidation/reduction, the transition in the conductivity of polyaniline (PAn) film on gold electrode surface leads to a large change of surface plasmon resonance (SPR) response due to a change in the imaginary part of dielectric constant of PAn film. Based on the amplifying response of SPR to the redox transformation of PAn film as a direct result of the enzymatic reaction between horseradish peroxidase (HRP) and PAn in the presence of H2O2, a novel PAn-mediated HRP sensor has been fabricated. The electrochemical SPR biosensor, unlike a usual binding assay with SPR, can afford a larger SPR response, and can also be reused by reducing the PAn film electrochemically to its reduced state. This method opens up a new route to the fabrication of SPR biosensor.  相似文献   

2.
This paper describes an electrochemical biosensor for free cholesterol monitoring. The sensor is a multienzymatic electrodic system in which horseradish peroxidase and cholesterol oxidase are simultaneously immobilized within a polymeric film, on the surface of a pyrolitic graphite electrode. From voltammetric and amperometric (flow-injection) data obtained, the efficiency, reproducibility and stability of the system are discussed. Results obtained, of interest for basic and applied biochemistry, represent a first step for construction of a mediator-free biosensor with potentialities for a successful application in the biosensor area.  相似文献   

3.
A.K.M. Kafi 《Talanta》2009,79(1):97-37
We report on a novel amperometric biosensor for detecting phenolic compounds based on the co-immobilization of horseradish-peroxidase (HRP) and methylene blue (MB) with chitosan on Au-modified TiO2 nanotube arrays. The titania nanotube arrays were directly grown on a Ti substrate using anodic oxidation first; a gold thin film was then coated onto the TiO2 nanotubes by an argon plasma technique. The morphology and composition of the fabricated Au-modified TiO2 nanotube arrays were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Cyclic voltammetry and amperometry were used to study the proposed electrochemical biosensor. The effect of pH, applied electrode potential and the concentration of H2O2 on the sensitivity of the biosensor have been systemically investigated. The performance of the proposed biosensor was tested using seven different phenolic compounds, showing very high sensitivity; in particular, the linearity of the biosensor for the detection of 3-nitrophenol was observed from 3 × 10−7 to 1.2 × 10−4 M with a detection limit of 9 × 10−8 M (based on the S/N = 3).  相似文献   

4.
The proposed electrochemical biosensor based on the inhibition of glutathione-s-transferase (GST) onto SAM modified gold due to captan was developed and determined by CV technique. The bioelectrode exhibited improved fast response time (12 s) with the detection limits 0.25–16 ppm, percentage inhibition >72% and high sensitivity 4.5 uA/ppm at standard optimal conditions. The recovery experiment results were found between 77% and 144% from spiked water sources. The bioelectrode was regenerated by DTT and reusable. The bioelectrodes were characterized by UV–visible, CV, AFM and STM. Thus, the proposed electrochemical biosensor is not only detected captan but also its metabolite and promising for real-time analysis of small molecules of environmental interest.  相似文献   

5.
MicroRNAs (miRNAs), a class of small endogenous nonprotein-coding RNAs, regulate a wide range of biological processes, and their abnormal expressions are related to the growth and development of plants. Thus, a simple, rapid, and highly sensitive assay for miRNA detection is of great significance. In this work, a label-free and ultrasensitive assay for miRNA detection using protein cage nanoparticles has been developed. Apoferritin-encapsulated Cu nanoparticles (Cu-apoferritin) could be immobilized on the electrode through special reaction between amino and carboxyl. Hybridization event between the probe DNA and the target miRNA-159a is confirmed by electrochemical oxidation signal after Cu released into the detection buffer by adjusting the pH. This assay is highly selective and sensitive with a low detection limit of 3.5 fM. Moreover, the developed method can even discriminate single-base mismatched strand between the complementary targets. The effect of abscisic acid on the expression level of miRNA-159a in Arabidopsis thaliana seeds was also investigated.  相似文献   

6.
A novel and sensitive electrochemical DNA biosensor based on multi-walled carbon nanotubes functionalized with a carboxylic acid group (MWNTs-COOH) for covalent DNA immobilization and enhanced hybridization detection is described. The MWNTs-COOH-modified glassy carbon electrode (GCE) was fabricated and oligonucleotides with the 5'-amino group were covalently bonded to the carboxyl group of carbon nanotubes. The hybridization reaction on the electrode was monitored by differential pulse voltammetry (DPV) analysis using an electroactive intercalator daunomycin as an indicator. Compared with previous DNA sensors with oligonucleotides directly incorporated on carbon electrodes, this carbon nanotube-based assay with its large surface area and good charge-transport characteristics dramatically increased DNA attachment quantity and complementary DNA detection sensitivity. This is the first application of carbon nanotubes to the fabrication of an electrochemical DNA biosensor with a favorable performance for the rapid detection of specific hybridization.  相似文献   

7.
A novel multi-channel poly(methyl methacrylate) (PMMA) microfluidic biosensor with interdigitated ultramicroelectrode arrays (IDUAs) for electrochemical detection was developed. The focus of the development was a simple fabrication procedure and the realization of a reliable large IDUA that can provide detection simultaneously to several microchannels. As proof of concept, five microchannels are positioned over a large single IDUA where the channels are parallel with the length of the electrode finger. The IDUAs were fabricated on the PMMA cover piece and bonded to a PMMA substrate containing the microfluidic channels using UV/ozone-assisted thermal bonding. Conditions of device fabrication were optimized realizing a rugged large IDUA within a bonded PMMA device. Gold adhesion to the PMMA, protective coatings, and pressure during bonding were optimized. Its electrochemical performance was studied using amperometric detection of potassium ferri and ferro hexacyanide. Cumulative signals within the same chip showed very good linearity over a range of 0–38 μM (R 2?=?0.98) and a limit of detection of 3.48 μM. The bonding of the device was optimized so that no cross talk between the channels was observed which otherwise would have resulted in unreliable electrochemical responses. The highly reproducible signals achieved were comparable to those obtained with separate single-channel devices. Subsequently, the multi-channel microfluidic chip was applied to a model bioanalytical detection strategy, i.e., the quantification of specific nucleic acid sequences using a sandwich approach. Here, probe-coated paramagnetic beads and probe-tagged liposomes entrapping ferri/ferro hexacyanide as the redox marker were used to bind to a single-stranded DNA sequence. Flow rates of the non-ionic detergent n-octyl-β-d-glucopyranoside for liposome lysis were optimized, and the detection of the target sequences was carried out coulometrically within 250 s and with a limit of detection of 12.5 μM. The robustness of the design and the reliability of the results obtained in comparison to previously published single-channel designs suggest that the multi-channel device offers an excellent opportunity for bioanalytical applications that require multianalyte detection and high-throughput assays.
Figure
Multi-channel microfluidic biosensor with integrated IDUAs for a sandwich nucleic acid hybridization assay  相似文献   

8.
A lipase-based electrochemical biosensor has been fabricated for the quantitative determination of target DNA. It is based on a stem-loop nucleic acid probe labeled with ferrocene containing a butanoate ester that is hydrolyzed by lipase. The other end of the probe DNA is linked, via carboxy groups, to magnetic nanoparticles. The binding of target DNA transforms the hairpin structure of the probe DNA and causes the exposure of ester bonds. This results in the release of electro-active ferrocene after hydrolysis of the ester bonds, and in an observable electrochemical response. The quantity of target DNA in the concentration range between 1?×?10?12 mol·L?1 and 1?×?10?8 mol·L?1 can be determined by measuring the electrochemical current. The method can detect target DNA with rapid response (30 min) and low interference.
Figure
A lipase-based electrochemical biosensor has been fabricated for the quantitative determination of target DNA. It is based on a stem-loop nucleic acid probe labeled with ferrocene containing a butanoate ester that is hydrolyzed by lipase. The method can detect target DNA with rapid response (30 min) and low interference.  相似文献   

9.
In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5 × 10−3–3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs.  相似文献   

10.
In this work, we demonstrate for the first time that 4-methyl-5-nitrocatechol (4M5NC) and 2,4,5-trihydroxytoluene (2,4,5-THT), two compounds obtained from the 2,4-DNT biodegradation are recognized by polyphenol oxidase as substrates. An amperometric biosensor is described for detecting these compounds and for evaluating the efficiency of the 2,4-DNT conversion into 4M5NC in the presence of bacteria able to produce the 2,4-DNT-biotransformation. The biosensor format involves the immobilization of polyphenol oxidase into a composite matrix made of glassy carbon microspheres and mineral oil. The biosensor demonstrated to be highly sensitive for the quantification of 4M5NC and 2,4,5-THT. The analytical parameters for 4M5NC are the following: sensitivity of (7.5 ± 0.1) × 105 nAM−1, linear range between 1.0 × 10−5 and 8.4 × 10−5 M, and detection limit of 4.7 × 10−6 M. The sensitivity for the determination of 2,4,5-THT is (6.2 ± 0.6) × 106 nAM−1, with a linear range between 1.0 × 10−6 and 5.8 × 10−6 M, and a detection limit of 2.0 × 10−7. Under the experimental conditions, it was possible to selectively quantify 4M5NC even in the presence of a large excess of 2,4-DNT. The suitability of the biosensor for detecting the efficiency of 2,4-DNT biotransformation into 4M5NC is demonstrated and compared with HPLC-spectrophotometric detection, with very good correlation. This biosensor holds great promise for decentralized environmental testing of 2,4-DNT.  相似文献   

11.
An electrochemical RNA aptamer-based biosensor for rapid and label-free detection of the bronchodilator theophylline was developed. The 5'-disulfide-functionalized end of the RNA aptamer sequence was immobilized on a gold electrode, and the 3'-amino-functionalized end was conjugated with a ferrocene (Fc) redox probe. Upon binding of theophylline the aptamer switches conformation from an open unfolded state to a closed hairpin-type conformation, resulting in the increased electron-transfer efficiency between Fc and the electrode. The electrochemical response, which was measured by differential pulse voltammetry, reaches saturation within a few minutes after addition of theophylline, and the dynamic range for detecting theophylline is 0.2-10 muM. The electrode displays an inhibited response when applied directly in serum samples treated with RNase inhibitors; however a full response to the theophylline serum concentration was obtained by transferring the electrode to blank serum-free buffer solutions. It was demonstrated that theophylline is detected with high selectivity in the presence of caffeine and theobromine.  相似文献   

12.
A label-free sensing assay for ethanolamine (EA) detection based on G-quadruplex-EA binding interaction is presented by using G-rich aptamer DNA (Ap-DNA) and electrochemical impedance spectroscopy (EIS). The presence of K+ induces the Ap-DNA to form a K+-stabilized G-quadruplex structure which provides binding sites for EA. The sensing mechanism was further confirmed by circular dichroism (CD) spectroscopy and EIS measurement. As a result, the charge transfer resistance (RCT) is strongly increased as demonstrated by using the ferro/ferricyanide ([Fe(CN)6]3−/4−) as a redox probe. Under the optimized conditions, a linear relationship between ΔRCT and EA concentration was obtained over the range of 0.16 nM and 16 nM EA, with a detection limit of 0.08 nM. Interference by other selected chemicals with similar structure was negligible. Analytical results of EA spiked into tap water and serum by the sensor suggested the assay could be successfully applied to real sample analysis. With the advantages of high sensitivity, selectivity and simple sensor construction, this method is potentially suitable for the on-site monitoring of EA contamination.  相似文献   

13.
A novel piezoelectric immunosensor has been developed for the determination of beta-indole acetic acid (IAA) in dilute solutions. The detection is based on competitive immunoreaction between a hapten (IAA) and an antigen (IAA-BSA, hapten-protein conjugation) bound to an anti-IAA antibody, immobilized on a quartz crystal microbalance (QCM). The frequency change (y) of the sensor caused by antigen is linearly related to the logarithm of the concentration of IAA (x) in the range of 0.5 ng/ml - 5 microg/ml with a regression equation of the form y = -23x + 151 (r = 0.9937).  相似文献   

14.
Hepatitis B virus (HBV) can cause viral infection that attacks the liver and it is a major global health problem that put people at a high risk of death from cirrhosis of the liver and liver cancer. HBV has infected one third of the worldwide population, and 350 million people suffer from chronic HBV infection. For these reasons, development of an accurate, sensitive and expedient detection method for diagnosing, monitoring and assessing therapeutic response of HBV is very necessary and urgent for public health and disease control. Here we report a new strategy for detection of viral load quantitation of HBV based on colorimetric polymerase chain reaction (PCR) with DNAzyme-containing probe. The special DNAzyme adopting a G-quadruplex structure exhibited peroxidase-like activity in the presence of hemin to report colorimetric signal. This method has shown a broad range of linearity and high sensitivity. This study builds important foundation to achieve the specific and accurate detection level of HBV DNA with a low-cost and effective method in helping diagnosing, preventing and protecting human health form HBV generally all over the world and especially in developing countries.  相似文献   

15.
A novel biosensor based on single-stranded DNA (ssDNA) probe functionalized aluminum anodized oxide (AAO) nanopore membranes was demonstrated for Escherichia coli O157:H7 DNA detection. An original and dynamic polymerase-extending (PE) DNA hybridization procedure is proposed, where hybridization happens in the existence of Taq DNA polymerase and dNTPs under controlled reaction temperature. The probe strand would be extended as long as the target DNA strand, then the capability to block the ionic flow in the pores has been prominently enhanced by the double strand complex. We have investigated the variation of ionic conductivity during the fabrication of the film and the hybridization using cyclic voltammetry and impedance spectroscopy. The present approach provides low detection limit for DNA (a few hundreds of pmol), rapid label-free and easy-to-use bacteria detection, which holds the potential for future use in various ss-DNA analyses by integrated into a self-contained biochip.  相似文献   

16.
Continued development of high-performance and cost-effective in vitro diagnostic tools is vital for improving infectious disease treatment and transmission control. For nucleic acid diagnostics, moving beyond enzyme-mediated amplification assays will be critical in reducing the time and complexity of diagnostic technologies. Further, an emerging area of threat, in which in vitro diagnostics will play an increasingly important role, is antimicrobial resistance (AMR) in bacterial infections. Herein, we present an amplification-free electrochemical CRISPR/Cas biosensor utilizing silver metallization (termed E-Si-CRISPR) to detect methicillin-resistant Staphylococcus aureus (MRSA). Using a custom-designed guide RNA (gRNA) targeting the mecA gene of MRSA, the Cas12a enzyme allows highly sensitive and specific detection when employed with silver metallization and square wave voltammetry (SWV). Our biosensor exhibits excellent analytical performance, with detection and quantitation limits of 3.5 and 10 fM, respectively, and linearity over five orders of magnitude (from 10 fM to 0.1 nM). Importantly, we observe no degradation in performance when moving from buffer to human serum samples, and achieve excellent selectivity for MRSA in human serum in the presence of other common bacteria. The E-Si-CRISPR method shows significant promise as an ultrasensitive field-deployable device for nucleic acid-based diagnostics, without requiring nucleic acid amplification. Finally, adjustment to a different disease target can be achieved by simple modification of the gRNA protospacer.

An amplification-free electrochemical CRISPR/Cas biosensor utilizing silver metallization (termed E-Si-CRISPR) allows detection of methicillin-resistant Staphylococcus aureus (MRSA) with excellent sensitivity and specificity.  相似文献   

17.
MicroRNAs是一类内源性非编码小RNA分子,可调控靶基因的表达.特异性microRNAs的失调在诸如癌症、心血管疾病、免疫疾病、神经退行性疾病和皮肤疾病等的发展过程中起着关键作用,常作为疾病早期诊断和预后的生物标志物.电化学生物传感器由于其灵敏、快速、成本低等优势,已经成为传统microRNAs检测方法的一种很有...  相似文献   

18.
19.
A label-free electrochemical DNA biosensor was developed through the attachment of polystyrene-g-soya oil-g-imidazole graft copolymer (PS-PSyIm) onto modified graphene oxide (GO) electrodeposited on glassy carbon electrode (GC). GC/GO electrode was initially functionalised via electrochemical reduction of 4-nitrobenzene diazonium salt, followed by the electrochemical reduction of NO2 to NH2. Subsequent to the electrochemical deposition of gold nanoparticles on modified surface, the attachment of the PS-PSyIm graft copolymer on the resulting electrode was achieved. The interaction of PS-PSyIm with DNA at the bare glassy carbon electrode was studied by cyclic voltammetry technique, and it was found that interaction predominantly takes place through intercalation mode. The selectivity of developed DNA biosensor was also explored by DPV on the basis of considering hybridisation event with non-complementary, one-base mismatched DNA and complementary target DNA sequence. Large decrease in the peak current was found upon the addition of complementary target DNA. The sensitivity of the developed DNA biosensor was also investigated, and detection limit was found to be 1.20 nmol L?1.  相似文献   

20.
A novel tyrosinase biosensor based on hydroxyapatite nanoparticles (nano-HA)-chitosan nanocomposite has been developed for the detection of phenolic compounds. The uniform and size controlled nano-HA was synthesized by hydrothermal method, and its morphological characterization was examined by transmission electron microscope (TEM). Tyrosinase was then immobilized on a nano-HA-chitosan nanocomposite-modified gold electrode. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the sensing film. The prepared biosensor was applied to determine phenolic compounds by monitoring the reduction signal of the biocatalytically produced quinone species at −0.2 V (vs. saturated calomel electrode). The effects of the pH, temperature and applied potential on the biosensor performance were investigated, and experimental conditions were optimized. The biosensor exhibited a linear response to catechol over a wide concentration range from 10 nM to 7 μM, with a high sensitivity of 2.11 × 103 μA mM−1 cm−2, and a limit of detection down to 5 nM (based on S/N = 3). The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 3.16, 1.31 and 3.52 μM for catechol, phenol and m-cresol, respectively. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号