首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The molecular mechanisms of aqueous solvent penetration into a flat nanopore with hydrophobic structureless walls containing a Na+Cl? ion pair with nonfixed distance between ions is studied by computer simulations. A detailed many-body polycenter model of intermolecular interactions calibrated with respect to experimental data for the free energy of attachment of water vapor molecules and quantum-chemical calculations in clusters is used. The ion pair hydration results in its decomposition. Drawing the molecules into the gap between ions makes easier penetration of solvent and filling of the nanopore with electrolyte. The ion-pair dissociation is accompanied by dramatic changes in the chemical potential of molecules and electric properties of the whole system. The thermodynamic characteristics of decomposition are stable as regards variations in the pore width. The post-decomposition electric polarizability demonstrates strong anisotropy associated with the nanopore flatness.  相似文献   

2.
A computer simulation of the structure of Na+ ion hydration shells with sizes in the range of 1 to 100 molecules in a planar model nanopore 0.7 nm wide with structureless hydrophilic walls is performed using the Monte Carlo method at a temperature of 298 K. A detailed model of many-body intermolecular interactions, calibrated with reference to experimental data on the free energy and enthalpy of reactions after gaseous water molecules are added to a hydration shell, is used. It is found that perturbations produced by hydrophilic walls cause the hydration shell to decay into two components that differ in their spatial arrangement and molecular orientational order.  相似文献   

3.
Computer simulation has been employed to study the structure of a hydration shell of a Na+ ion under the conditions of a planar nanopore with structureless hydrophilic walls at 298 K. Intermolecular interactions have been described in terms of a detailed model calibrated with respect to experimental data on the free energy and enthalpy of the initial reactions of vapor molecule attachment to the ion. In the field of hydrophilic walls, the hydration shell is disrupted into an enveloping part and that spread over the surface of the walls. At the final stage of hydration, states with asymmetric distribution of molecules on opposite walls survive and the phenomenon of ion displacement out of its shell is stably reproduced. The orientational molecular order in the system strongly depends on the degree of wall hydrophilicity. The hydration shell of a sodium ion is less stable with respect to disturbances generated by the field of hydrophilic walls than the shell of a chlorine ion is.  相似文献   

4.
Computer simulation has been employed to study the effect of a confined space of a planar model pore with structureless hydrophobic walls on the hydration of Na+Cl ion pairs in water vapor at room temperature. A detailed many-body model of intermolecular interactions has been used. The model has been calibrated relative to experimental data on the free energy and enthalpy of the initial reactions of water molecule attachment to ions and the results of quantum-chemical calculations of the geometry and energy of Na+Cl (H2O)N clusters in stable configurations, as well as spectroscopic data on Na+Cl dimer vibration frequencies. The free energy and work of hydration, as well as the adsorption curve, have been calculated from the first principles by the bicanonical statistical ensemble method. The dependence of hydration shell size on interionic distance has been calculated by the method of compensation potential. The transition between the states of a contact (CIP) and a solvent-separated ion pair (SSIP) has been reproduced under the conditions of a nanopore. The influence of the pore increases with the hydration shell size and leads to the stabilization of the SSIP states, which are only conditionally stable in bulk water vapor.  相似文献   

5.
The effect of hydrophilic walls on the structure of the hydration shell of a Cl? ion is studied in terms of the model flat nanopore in contact with water vapors at room temperature by the Monte Carlo computerassisted simulations. In the field of hydrophilic walls, the hydration shell falls into two parts: the ion-enveloping part and the molecular-film spots spread over the wall surface above and under the ion. Both parts have the pronounced radial-layered structure. The three-dimensional scheme of distribution of the averaged local shell density represents a system of conical coaxial layers expanding in the direction from wall to ion. The effect of forcing out the ion from its own hydration shell is also observed for hydrophilic walls. The specific electric polarizability of the shell is strongly anisotropic. Its longitudinal component is several times larger than the transversal component and behaves nonmonotonically as the hydration shell grows, passing through the maximum. The molecular order near the walls is characterized by the preferential orientation of the molecule plane in parallel to the wall plane and the turn of symmetry axes of molecules in the direction parallel to the normal to the pore plane in the vicinity of the ion.  相似文献   

6.
The mean force potential (MFP) of interaction between counterions Na+ and Cl? in a planar nanopore with structureless hydrophobic walls is calculated via computer simulation under the condition that the nanopore is in contact with water at an external pressure that exceeds the saturation pressure but remains insufficient to fill the nanopore with water. For a nanopore with a liquid phase, the MFP dependence on the interionic distance indicates the dissociation of an ion pair into two hydrated ions in a nanopore that is not completely filled with water. Fluctuations in the number of water molecules drawn into the interionic space decisively influence the dissociation. The attraction between counterions, averaged over thermal fluctuations, depends largely on the pore width and grows as the shielding of the ions’ electric field by water molecules in a narrow pore diminishes. The contributions from energy and entropy to the free energy of hydration are analyzed.  相似文献   

7.
A computer modeling is carried out for the structure and IR spectra of ethylene glycol-9 water molecules and ethylene glycol-9 water molecules-M+ systems, where M+ = Na+, K+. The presence of cations changes the structure of the glycol hydrate shell, which leads to a decrease in the activation energy of glycol self-diffusion in the solution with the addition of salts in comparison with its value in the water-glycol solution.  相似文献   

8.
Studying the effect of alkali and alkaline‐earth metal cations on Langmuir monolayers is relevant from biophysical and nanotechnological points of view. In this work, the effect of Na+ and Ca2+ on a model of an anionic Langmuir lipid monolayer of dimyristoylphosphatidate (DMPA?) is studied by molecular dynamics simulations. The influence of the type of cation on lipid structure, lipid–lipid interactions, and lipid ordering is analyzed in terms of electrostatic interactions. It is found that for a lipid monolayer in its solid phase, the effect of the cations on the properties of the lipid monolayer can be neglected. The influence of the cations is enhanced for the lipid monolayer in its gas phase, where sodium ions show a high degree of dehydration compared with calcium ions. This loss of hydration shell is partly compensated by the formation of lipid–ion–lipid bridges. This difference is ascribed to the higher charge‐to‐radius ratio q/r for Ca2+, which makes ion dehydration less favorable compared to Na+. Owing to the different dehydration behavior of sodium and calcium ions, diminished lipid–lipid coordination, lipid–ion coordination, and lipid ordering are observed for Ca2+ compared to Na+. Furthermore, for both gas and solid phases of the lipid Langmuir monolayers, lipid conformation and ion dehydration across the lipid/water interface are studied.  相似文献   

9.
The thermodynamic states corresponding to solvent separated (SSIP) and contacting (CIP) Na+Cl? ion pairs in molecular water clusters have been obtained by random walks in a configurational space with an equilibrium distribution function at 273 and 150 K. The transition to the SSIP state begins in a thresh-old-type manner in clusters containing 10–12 molecules, with the interionic distance increasing continuously up to disintegration into two hydrated ions with the growth of a hydration shell. As the cluster size increases, the hydration shell shifts from sodium ion to chlorine ion. In the first hydration layer, the electric field of the ions ruptures as many as 50% of hydrogen bonds.  相似文献   

10.
11.
Micro hydration structures of the sodium ion, [Na(H2O) n ]+, n = 1–12, were probed by density functional theory (DFT) at B3LYP/aug-cc-pVDZ level in both gaseous and aqueous phase. The predicted equilibrium sodium–oxygen distance of 0.240 nm at the present level of theory. The four-, five- and six-coordinated cluster can transform from each other at the ambient condition. The analysis of the successive water binding energy and natural charge population (NBO) on Na+ clearly shows that the influence of Na+ on the surrounding water molecules goes beyond the first hydration shell with the hydration number of 6. The Car-Parrinello molecular dynamic simulation shows that only the first hydration sphere can be found, and the hydration number of Na+ is 5.2 and the hydration distance (rNa–O) is 0.235 nm. All our simulations mentioned in the present paper show an excellent agreement with the diffraction result from X-ray scattering study.  相似文献   

12.
《Fluid Phase Equilibria》2004,219(1):49-54
Constant-temperature and constant-pressure (NpT) molecular dynamics simulations were performed to study the effects of salt concentration ranging from dilute to supersaturated concentrations on solution structure and dynamical properties of aqueous sodium chloride solutions at 298 K. The rigid SPC/E model was used for water molecules, and sodium and chloride ions were modeled as charged Lennard–Jones particles. Na+–Cl radial distribution functions showed the presence of contact ion pairs and solvent separated ion pairs. The coordination numbers of Na+–Cl ion pairs increased with salt concentration up to saturated concentration, although the number of contact ion pairs was almost constant in supersaturated regions. The tracer diffusion coefficients of both ions decreased with salt concentration up to saturated concentration, while that of sodium ion was almost constant in supersaturated regions. The tracer diffusion coefficients of both ions were therefore quite close to each other. The constant number of the contact ion pairs and the almost equality of the tracer diffusion coefficients of both ions would lead to the formation of clusters in supersaturated solutions.  相似文献   

13.
The precise guidance to different ions across the biological channels is essential for many biological processes. An artificial nanopore system will facilitate the study of the ion‐transport mechanism through nanosized channels and offer new views for designing nanodevices. Herein we reveal that a 2.5 nm‐sized, fullerene‐shaped molecular cluster Li48+mK12(OH)m[UO2(O2)(OH)]60?(H2O)n (m≈20 and n≈310) ( U60 ) shows selective permeability to different alkali ions. The subnanometer pores on the water–ligand‐rich surface of U60 are able to block Rb+ and Cs+ ions from passing through, while allowing Na+ and K+ ions, which possess larger hydrated sizes, to enter the interior space of U60 . An interestingly high entropy gain during the binding process between U60 and alkali ions suggests that the hydration shells of Na+/K+ and U60 are damaged during the interaction. The ion selectivity of U60 is greatly influenced by both the morphologies of the surface nanopores and the dynamics of the hydration shells.  相似文献   

14.
Formation of sodium adducts in electrospray (ESI) has been known for long time, but has not been used extensively in practice, and several important aspects of Na+ adduct formation in ESI source have been almost unexplored: the ionization efficiency of different molecules via Na+ adduct formation, its dependence on molecular structure and Na+ ion concentration in solution, fragmentation behaviour of the adducts as well as the ruggedness (a prerequisite for wider practical use) of ionization via Na+ adduct formation. In this work, we have developed a parameter describing sodium adducts formation efficiency (SAFE) of neutral molecules and have built a SAFE scale that ranges for over four orders of magnitude and contains 19 compounds. In general, oxygen bases have higher efficiency of Na+ adducts formation than nitrogen bases because of the higher partial negative charge on oxygen atoms and competition from protonation in the case of nitrogen bases. Chelating ability strongly increases the Na+ adduct formation efficiency. We show that not only protonation but also Na+ adduct formation is a quantitative and reproducible process if relative measurements are performed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
An infinitely diluted aqueous solution of Rb+ was studied using ab initio-based model potentials in classical Monte Carlo simulations to describe its structural and thermodynamic features. An existing flexible and polarizable model [Saint-Martin et al. in J Chem Phys 113(24) 10899, 2000] was used for water–water interactions, and the parameters of the Rb+–water potential were fitted to reproduce the polarizability of the cation and a sample of ab initio pair interaction energies. It was necessary to calibrate the basis set to be employed as a reference, which resulted in a new determination of the complete basis set (CBS) limit energy of the optimal Rb+–OH2 configuration. Good agreement was found for the values produced by the model with ab initio calculations of three- and four-body nonadditive contributions to the energy, as well as with ab initio and experimental data for the energies, the enthalpies and the geometric parameters of Rb+(H2O) n clusters, with n = 1,  2,…, 8. Thus validated, the potential was used for simulations of the aqueous solution with three versions of the MCDHO water model; this allowed to assess the relative importance of including flexibility and polarizability in the molecular model. In agreement with experimental data, the Rb+–O radial distribution function (RDF) showed three maxima, and hence three hydration shells. The average coordination number was found to be 6.9, with a broad distribution from 4 to 12. The dipole moment of the water molecules in the first hydration shell was tilted to 55° with respect to the ion’s electric field and had a lower value than the average in bulk water; this latter value was recovered at the second shell. The use of the nonpolarizable version of the MCDHO water model resulted in an enhanced alignment to the ion’s electric field, not only in the first, but also in the second hydration shell. The hydration enthalpy was determined from the numerical simulation, taking into account corrections to the interfacial potential and to the spurious effects due to the periodicity imposed by the Ewald sums; the resulting value lied within the range of the various different experimental data. An analysis of the interaction energies between the ion and the water molecules in the different hydration shells and the bulk showed the same partition of the hydration enthalpy as for K+. The reason for this similarity is that at distances longer than 3 Å, the ion–water interaction is dominated by the charge-(enhanced) dipole term. Thus, it was concluded that starting at K+, the hydration properties of the heavier alkali metal cations should be very similar.  相似文献   

16.
The potential curves for aquacomplexes of Li+, Na+ K+ ions with the coordination numbers, n, equal to 4, 6 and 8 have been calculated by the extended Hückel method. The equilibrium values of the hydrated shell radius and the binding energy have been determined. The complexes of Li+ with n = 6 and Na+ and K+ with n = 8 were found to be the most advantageous energetically. As could be expected the contribution of the 3d-orbitals to the binding for the K+ion is much more considerable than for the Na+ion. The character of the potential curves for aquacomplexes of sodium and potassium ions is quite different. In the case of the K+ion the curves are found to be very smooth and slowly decreasing with distance, which can be attributed to the poor hydratability of this ion and the “loosening” of water structure by it.  相似文献   

17.
Aqueous Na‐ or K‐ion batteries could virtually eliminate the safety and cost concerns raised from Li‐ion batteries, but their widespread applications have generally suffered from narrow electrochemical potential window (ca. 1.23 V) of aqueous electrolytes that leads to low energy density. Herein, by exploring optimized eutectic systems of Na and K salts with asymmetric imide anions, we discovered, for the first time, room‐temperature hydrate melts for Na and K systems, which are the second and third alkali metal hydrate melts reported since the first discovery of Li hydrate melt by our group in 2016. The newly discovered Na‐ and K‐ hydrate melts could significantly extend the potential window up to 2.7 and 2.5 V (at Pt electrode), respectively, owing to the merit that almost all water molecules participate in the Na+ or K+ hydration shells. As a proof‐of‐concept, a prototype Na3V2(PO4)2F3|NaTi2(PO4)3 aqueous Na‐ion full‐cell with the Na‐hydrate‐melt electrolyte delivers an average discharge voltage of 1.75 V, that is among the highest value ever reported for all aqueous Na‐ion batteries.  相似文献   

18.
The Monte Carlo method has been used to calculate the potential of mean force for Na+ and Cl? ions interacting in model planar nanopores with structureless walls under the conditions of the material contact with water vapor at room temperature and above water boiling point. The interactions have been described using a detailed many-body model calibrated with respect to experimental data on the free energy of attachment reactions and the results of quantum-chemical calculations. Dissociation becomes possible when the vapor density increases as a sufficient number of molecules are pulled into the field of the ions. The dissociation proceeds sooner under the conditions of the nanopore than in bulk water vapor. Hydration decreases the energy of the dissociated state; however, the entropy component of the free energy partly compensates for the decrease in the internal energy, thereby increasing the stability of a contact ion pair. After the dissociation of a contact ion pair (CIP), ions are retained within a cluster in the state of a solvent-separated ion pair (SSIP). Fluctuations in the number of pulled-in vapor molecules, which are correlated with fluctuations in the interionic distance, stabilize the SSIP states with respect to recombination, while a decrease in the screening of the field of ions under the conditions of the nanopore stabilize the SSIP states with respect to cluster decay. The conditions of the nanopore stimulate the passage of an ion pair from the CIP to the SSIP state due to the rearrangement of the statistical weights in favor of molecules being located in the interionic gap. Thus, under the conditions of the nanopore, the stability of the SSIP states increases with respect to both the recombination of the ions and the decay of the ion-molecular associate.  相似文献   

19.
The Monte Carlo method is used to calculate the free energy, entropy, and work of water cluster formation in the field of Na+Cl ion pairs. A detailed model is used that allows for polarization and covalent many-particle interactions, as well as the effects of ion charge reversal. The model is matched to the experimental data on the free energy of ion hydration and the results of the quantum-chemical calculations of stable configurations. The hydration leads to the cleavage of an ion pair in a molecular cluster after approximately ten water molecules are captured. As vapor molecules are added, the stable interion distance monotonically elongates. The low free energy barrier separating the dissociated and nondissociated states of the ion pair in an equilibrium cluster does not hinders the reversible spontaneous transitions between the states, which are responsible for strong fluctuations and the instability of the system. Unlike hydroxonium-containing ion pairs, the formation of long-lived metastable states of hydrated Na+Cl pairs is impossible.  相似文献   

20.
Reaction dynamics of sodium cluster ions, Na n + (n = 2–9), in collision with molecular oxygen, O2 was investigated by measuring the absolute dissociation cross sections and the branching fractions by using a tandem mass spectrometer equipped with several octapole ion guides. The mass spectrum of the product ions show that the dominant reaction channels are production of oxide ions, NakOi (i =1, 2), and intact ions, Na p + (p < n). With increase in the collision energy, the cross section for the production of the oxide ions decreased, while that for the production of the intact ions increased. The collision-energy dependences of the cross section for the oxide formation reveals that electron harpooning from the molecule to Na n + preludes the oxideion formation. On the other hand, the collision-energy dependences of the cross sections for the intact ion formation is explained by a hard-sphere-collision model similar to the collisional dissociation of Na n + by rare-gas impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号