首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
针对交叉旋翼复杂的气动干扰问题,建立了一种适合于交叉旋翼气动分析的数值模拟方法.该方法采用三维非定常Reynolds平均Navier?Stokes(RANS)方程来求解流场,使用动态嵌套网格方法模拟旋翼运动.使用共轴旋翼悬停实验结果验证了该方法的准确性.利用该方法模拟了交叉旋翼在不同状态下的流场,计算了拉力和悬停效率,...  相似文献   

2.
基于动态网格的旋翼流场计算   总被引:3,自引:0,他引:3  
王立群  宋文萍  张茹 《计算物理》2000,17(4):367-371
基于无限插值理论,将旋翼按桨叶数分为几个子块,然后在桨叶连续公共界面上对接各子块,形成绕整个旋翼流场的三维多块网格。各桨叶子块的流场信息直接通过连续公共界面相互交换,利用非定常欧拉方程求解出整个旋翼流场。发展的动态网格在前飞流场计算中取得了成功。  相似文献   

3.
三维串列双圆柱绕流气动流场及声场模拟   总被引:2,自引:0,他引:2  
数值模拟三维串列双圆柱在不同间距比下湍流流态及其辐射声场.采用大涡模拟(LES)求解非定常不可压缩Navier-Stokes方程得到瞬时流场数据,从而得到声源相关数据,求解基于FW-H积分方程的Farassat-1A方程计算载荷噪声得到相应声场分布.通过对不同间距比下相应的声场及观测点的声压频谱图进行比较可以发现:随着间距的变化,流场呈现出3种不同的流态,其声场也呈现不同的特点,在临界间距比下,总噪声值最大.  相似文献   

4.
亚音主旋翼的噪声预测和声隐身分析   总被引:2,自引:1,他引:1  
本文介绍了基于FW-H方程的亚音主旋翼噪声预测方法,并在螺桨噪声预测程序基础上发展了主旋翼噪声预测程序。本文采用商用CFD软件FINE/TURBO模拟直升机旋翼流场,为噪声预测程序提供所需要的桨叶表面载荷,并用算例验证了载荷数据的准确性和噪声预测程序的有效性。本文计算和讨论了亚音悬停条件下的辐射噪声,并重点分析了不同形状桨叶对辐射噪声的影响,结果表明采用合理的薄翼型叶尖、尖削叶尖及线性扭转桨叶都可以降低辐射噪声,为通过改变桨叶形状降低旋翼辐射噪声提供了合理途径。  相似文献   

5.
针对贯流风扇气动噪声传播特性,采用基于非结构网格的CE/SE算法对其气动流场进行数值模拟,并模拟了气动噪声的传播.湍流模拟采用大涡模型,搭接式滑移网格模型处理动静干涉.噪声传播采用完全欧拉方程作为控制方程,远场采用无反射边界条件.将使用该方法得到的远场噪声频谱与实验数据进行对比分析,结果表明与实验测量得到宽带频谱不同,采用大涡模拟湍流模型进行声源模拟时,会加强部分离散频率上的声级,从而产生误差.  相似文献   

6.
李高华  王福新 《物理学报》2018,67(5):54701-054701
螺旋状尾迹涡是直升机悬停旋翼流场的主导特征之一,其时空演化特性对旋翼气动性能具有重要影响.为了揭示悬停状态下旋翼尾迹涡的演化特征,对两桨叶刚性旋翼在高雷诺数悬停状态下的双螺旋状尾迹涡开展数值研究,采用基于流场特征的网格自适应技术,结合低耗散迎风/中心混合格式以及延迟脱体涡模拟方法对Caradonna-Tung旋翼在桨尖马赫数为0.439、桨尖雷诺数为1.92×10~6的悬停流场进行了高分辨率计算.基于欧拉和拉格朗日两种描述方法对计算结果进行了分析,揭示了双螺旋尾涡系统的演化特性:后缘尾涡面在桨尖附近的反向卷起及其与下游桨尖涡的相互作用是影响涡系稳定性以及涡-涡相互作用的重要因素;涡龄小于720°时,在固连于桨叶上的旋转坐标系中观察,涡系具有时空稳定性,涡管中心处轴向涡量随涡龄按照幂函数规律衰减.在固连于漩涡中心的局部极坐标系中,周向速度分布以及涡核半径随涡龄的变化与理论涡模型相符合,环量随涡龄的变化显示了漩涡的生长、平衡及耗散等演化阶段;模态分析结果表明,除点涡模态外,来流与点涡的复合模态在漩涡演化过程中对流动特征的转变有重要影响;涡系轴截面速度场的拉格朗日拟序结构直观地显示了漩涡场的时空演化过程,揭示了漩涡配对和共旋穿越等流动特征,同时也展示了后缘尾涡面卷起现象在漩涡演化过程中的作用.  相似文献   

7.
旋翼作为直升机的主要升力和操纵部件, 具有复杂的流场结构, 如非定常性, 桨-涡干扰和桨尖涡等, 导致旋翼流场研究十分困难. 针对这一问题, 结合锁相技术和粒子图像测速(particle image velocimetry, PIV)技术开展了悬停状态下旋翼流场的实验研究, 并通过本征正交分解(proper orthogonal decomposition, POD)提取主要含能模态, 刻画流场时空演化. 结果显示, 旋翼尾流发展过程中向旋转轴靠近, 二维流场结构呈现倒三角结构, 即扩展到三维流动中会呈现倒锥型结构的特性; 通过POD进行含能模态分析, 旋翼尾流中对湍动能贡献最大的为桨叶涡结构, 其次是桨尖涡结构.   相似文献   

8.
圆柱和直桨叶突然启动瞬态流动的数值研究   总被引:1,自引:0,他引:1  
采用基于动网格方法的有限体积法对圆柱和直桨叶突然启动引起的二维非定常不可压粘性流进行了数值模拟,给出了计算方法.通过计算得到了Re=5000和9500时圆柱突然启动后的流场随时间演化的非定常过程.将计算结果与实验结果进行了对比,两者吻合较好;采用大涡模拟对高雷诺数下的直桨叶突然旋转启动的流场进行了计算,得到了完成启动后叶片内部瞬态流场的分布结果.  相似文献   

9.
采用数值模拟方法对船体与直升机旋翼的复合流场进行求解,研究了不同风向时复合流场的流线形态与湍动能分布、旋翼桨叶表面静压分布与旋翼升阻特性.数值模拟的正确性由缩比船模风洞试验验证.研究结果表明:旋翼流场与船体流场间存在相互干扰;侧风会增大复合流场的湍流范围,加剧旋翼周围流场的湍流强度和旋翼桨叶的挥舞振动;右舷15°风向条件不利于直升机的甲板悬停.  相似文献   

10.
非均匀桨直升机旋翼厚度噪声分析   总被引:1,自引:0,他引:1  
分析了桨叶间距非均匀调制对直升机旋翼厚度噪声的影响.桨叶间距按照正弦调制和余弦调制变化时,根据FW-H方程的Formulation 1A公式,计算了直升机悬停状态下的旋翼厚度噪声.桨尖速度为亚音速时的计算结果显示,与桨叶间距均匀的直升机旋翼厚度噪声相比,非均匀桨可以改变厚度噪声的频谱特征,而且在基本保持厚度噪声总声压级不变情况下,降低厚度噪声桨叶通过频率及谐频的线谱幅值.本文的分析和结果有助于认识非均匀旋翼厚度噪声的频谱变化规律.  相似文献   

11.
Small axial-flow fans used for computer cooling and many other appliances feature a rotor driven by a downstream motor held by several cylindrical struts. This study focuses on the aerodynamic mechanism of rotor-strut interaction for an isolated fan. The three-dimensional, unsteady flow field is calculated using FLUENT, and the sound radiation predicted by acoustic analogy is compared with measurement data. Striking differences are found between the pressure oscillations in various parts of the structural surfaces during an interaction event. The suction surface of the blade experiences a sudden increase in pressure when the blade trailing edge sweeps past a strut, while the process of pressure decrease on the pressure side of the blade is rather gradual during the interaction. The contribution of the latter towards the total thrust force on the structure is cancelled out significantly by that on the strut. In terms of the acoustic contributions from the rotor and strut, the upstream rotor dominates and this feature differs from the usual rotor-stator interaction acoustics in which the downstream part is responsible for most of the noise. It is therefore argued that the dominant interaction mechanism is potential flow in nature.  相似文献   

12.
An unsteady lifting-surface theory for a rotating subsonic annular cascade has been developed to predict the unsteady blade forces and the acoustic power generation caused by interaction of blades with inlet distortions or wakes. Disturbance pressure and velocity fields induced by the rotor blades with fluctuating blade force are expressed in terms of the blade force distribution and kernel functions. The spanwise distribution of the blade force is given as a sum of blade force modes, and the kernel functions are resolved into the corresponding modal components. The sound pressure and intensity are expressed as a sum of acoustic modes, the modal components of which are given in terms of the blade force mode components.Numerical computations have been conducted .for interaction with the external disturbance flows that are sinusoidal in the circumferential direction, but possess a phase skewing in the radial direction. Correlations among the acoustic modes, the blade force modes and the flow patterns of the external disturbance have been investigated. When the predominant acoustic mode is subresonant, the blade force amplitude is reduced by the three-dimensional effect, which is lessened as the frequency increases. At deeply superresonant states, however, the three-dimensional effect upon the spanwise average of the blade force amplitude is small. The generated sound power is effectively reduced by increasing the radial non-uniformity of the external disturbance.  相似文献   

13.
Centrifugal fans are widely used and the noise generated by these machines causes one of the serious problems. In general, the centrifugal fan noise is often dominated by tones at blade passage frequency and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cut-off in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and considering the scattering effect of the casing. The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of the centrifugal impeller. A discrete vortex method is used to model the centrifugal impeller and a wedge and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. In order to consider the scattering and diffraction effects of the casing, Kirchhoff-Helmholtz boundary element method (BEM) is developed. The source of Kirchhoff-Helmholtz BEM is newly developed, so the sound field of the centrifugal fan can be obtained. A centrifugal impeller and wedge are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound. The radiated acoustic field shows the diffraction and scattering effect of the wedge.  相似文献   

14.
A linear analytical model is developed for the chopping of a cylindrical vortex by a flat-plate airfoil, with or without a span-end effect. The major interest is the contribution of the tip–vortex produced by an upstream rotating blade in the rotor–rotor interaction noise mechanism of counter-rotating open rotors. Therefore the interaction is primarily addressed in an annular strip of limited spanwise extent bounding the impinged blade segment, and the unwrapped strip is described in Cartesian coordinates. The study also addresses the interaction of a propeller wake with a downstream wing or empennage. Cylindrical vortices are considered, for which the velocity field is expanded in two-dimensional gusts in the reference frame of the airfoil. For each gust the response of the airfoil is derived, first ignoring the effect of the span end, assimilating the airfoil to a rigid flat plate, with or without sweep. The corresponding unsteady lift acts as a distribution of acoustic dipoles, and the radiated sound is obtained from a radiation integral over the actual extent of the airfoil. In the case of tip–vortex interaction noise in CRORs the acoustic signature is determined for vortex trajectories passing beyond, exactly at and below the tip radius of the impinged blade segment, in a reference frame attached to the segment. In a second step the same problem is readdressed accounting for the effect of span end on the aerodynamic response of a blade tip. This is achieved through a composite two-directional Schwarzschild's technique. The modifications of the distributed unsteady lift and of the radiated sound are discussed. The chained source and radiation models provide physical insight into the mechanism of vortex chopping by a blade tip in free field. They allow assessing the acoustic benefit of clipping the rear rotor in a counter-rotating open-rotor architecture.  相似文献   

15.
A control grid (wake generator) aimed at reducing rotor-stator interaction modes in fan engines when mounted upstream of the rotor has been studied here. This device complements other active noise control systems currently proposed. The compressor model of the instrumented ONERA CERF-rig is used to simulate suitable conditions. The design of the grid is drafted out using semi-empirical models for wake and potential flow, and experimentally achieved. Cylindrical rods are able to generate a spinning mode of the same order and similar level as the interaction mode. Mounting the rods on a rotating ring allows for adjusting the phase of the control mode so that an 8 dB sound pressure level (SPL) reduction at the blade passing frequency is achieved when the two modes are out of phase. Experimental results are assessed by a numerical approach using computational fluid dynamics (CFD). A Reynolds averaged Navier-Stokes 2-D solver, developed at ONERA, is used to provide the unsteady force components on blades and vanes required for acoustics. The loading noise source term of the Ffowcs Williams and Hawkings equation is used to model the interaction noise between the sources, and an original coupling to a boundary element method (BEM) code is realized to take account of the inlet geometry effects on acoustic in-duct propagation. Calculations using the classical analytical the Green function of an infinite annular duct are also addressed. Simple formulations written in the frequency domain and expanded into modes are addressed and used to compute an in-duct interaction mode and to compare with the noise reduction obtained during the tests. A fairly good agreement between predicted and measured SPL is found when the inlet geometry effects are part of the solution (by coupling with the BEM). Furthermore, computed aerodynamic penalties due to the rods are found to be negligible. These results partly validate the computation chain and highlight the potential of the wake generator system proposed.  相似文献   

16.
Numerical simulation results of the civil aircraft engine fan stage noise in the far field are presented. Non-steady-state rotor–stator interaction is calculated the commercial software that solves the Navier–Stokes equations using differentturbulence models. Noise propagation to the far acoustic field is calculated by the boundary element method using acoustic Lighthill analogies without taking into account the mean current in the air inlet duct. The calculated sound pressure levels at points 50 m from the engine are presented, and the directional patterns of the acoustic radiation are shown. The use of the eddy resolving turbulence model to calculate rotor–stator interaction increases the accuracy in predicting fan stage noise.  相似文献   

17.
This paper reports on an experimental investigation of large-scale flowfield instabilities in a pump rotor and the process of noise generation by these instabilities. Measurements of the fluctuating components of velocity and surface pressure were made with hot-wire probes and surface mounted pressure transducers on a seven bladed back swept centrifugal water pump impeller operating with air as the working fluid. The impeller was operated without a volute or scroll diffuser, thereby eliminating any sound generation from pressure fluctuations on the volute cutoff. Thus the study focused on flow field and noise components other than the blade passage frequency (and its harmonics). The primary goal of the study was to provide fundamental information on the unsteady flow processes, particularly those associated with the noise generation in the device. It was further anticipated that detailed flow measurements would be useful for the validation of future computational simulations.The measured data at the discharge show a jet-wake type of flow pattern which results in a strong vorticity field. The flow with high velocity found on the pressure side of the impeller tends to move to the low-pressure region present at the suction side of the passage as a form of roll-up around the blade trailing edge. This motion causes an unsteady flow separation at the suction side of the blade and consequently disturbs the flow in the adjacent passage. By interacting with the impeller blades near the trailing edges, this instability flow causes a periodic pressure fluctuation on the blade surface and generates noise by a trailing edge generation mechanism. The spectrum of surface pressure measured at the trailing edge of each blade reveals a cluster of peaks which were identified with azimuthal mode numbers. The correlation between the acoustic farfield pressure and the surface pressure on the impeller blade has proven that the azimuthal modes synchronized with the number of impeller blades generate noise much more efficiently than the other modes. The paper also clarifies the correlation between unsteady flowfield measurements, in both impeller and laboratory co-ordinates, with the radiated noise properties. Thus some light is shed on the noise generation mechanisms of this particular device.  相似文献   

18.
不同叶轮形式下离心泵噪声特性对比研究   总被引:5,自引:0,他引:5  
针对具有无短叶片和有短叶片两种叶轮形式的离心泵,对设计状态下离心泵内部流场进行了全三维、非定常数值模拟,对比分析了其非定常流场特性和噪声辐射特性。流场分析表明:叶轮叶片和蜗舌的相互作用造成了叶片表面强烈的压力脉动,对长短叶片的叶轮形式,在局部增加长叶片表面压力脉动的同时,短叶片表面的压力脉动保持较低水平;同时能够有效降低泵体进口压力脉动,但出口压力脉动有所增强。以叶轮叶片表面作为声源辐射面,对比分析了两种叶轮的偶极子噪声辐射特性,结果表明:长短叶片结构通过改变声能在频域上的分布,从而能有效降低总声压级。   相似文献   

19.
A novel frequency-domain formulation for the prediction of the tonal noise emitted by rotors in arbitrary steady motion is presented. It is derived from Farassat's ‘Formulation 1A’, that is a time-domain boundary integral representation for the solution of the Ffowcs-Williams and Hawkings equation, and represents noise as harmonic response to body kinematics and aerodynamic loads via frequency-response-function matrices. The proposed frequency-domain solver is applicable to rotor configurations for which sound pressure levels of discrete tones are much higher than those of broadband noise. The numerical investigation concerns the analysis of noise produced by an advancing helicopter rotor in blade–vortex interaction conditions, as well as the examination of pressure disturbances radiated by the interaction of a marine propeller with a non-uniform inflow.  相似文献   

20.
A computational approach for flow-acoustic coupling in closed side branches   总被引:1,自引:0,他引:1  
The quarter-wave resonator, which produces a narrow band of high acoustic attenuation at regularly spaced frequency intervals, is a common type of silencer used in ducts. The presence of mean flow in the main duct, however, is likely to promote an interaction between these acoustic resonances and the flow. The coupling for some discrete flow conditions leads to the production of both large wave amplitudes in the side branch and high noise levels in the main duct, thereby transforming the quarter-wave silencer into a noise generator. The present approach employs computational fluid dynamics (CFD) to model this complex interaction between the flow and acoustic resonances at low Mach number by solving the unsteady, turbulent, and compressible Navier-Stokes equations. Comparisons between the present computations and the experiments of Ziada [PVP-Vol. 258, ASME, 35-59 (1993)] for a system with two coaxial side branches show that the method is capable of reproducing the physics of the flow-acoustic coupling and predicting the flow conditions when the coupling occurs. The theory of Howe [IMA J. Appl. Math. 32, 187-209 (1984)] is then employed to determine the location and timing of the acoustic power production during a cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号